Rigidity theorem for Willmore surfaces in a sphere

被引:0
|
作者
HONGWEI XU
DENGYUN YANG
机构
[1] Zhejiang University,Center of Mathematical Sciences
[2] Jiangxi Normal University,College of Mathematics and Information Science
来源
关键词
Willmore functional; Sobolev inequality; mean curvature; totally umbilical surface; 53C40; 53C24;
D O I
暂无
中图分类号
学科分类号
摘要
Let M2 be a compact Willmore surface in the (2 + p)-dimensional unit sphere S2 + p. Denote by H and S the mean curvature and the squared length of the second fundamental form of M2, respectively. Set ρ2 = S−2H2. In this note, we proved that there exists a universal positive constant C, such that if ∥ρ2∥2<C, then ρ2=0 and M2 is a totally umbilical sphere.
引用
收藏
页码:253 / 260
页数:7
相关论文
共 50 条
  • [1] Rigidity theorem for Willmore surfaces in a sphere
    Xu, Hongwei
    Yang, Dengyun
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2016, 126 (02): : 253 - 260
  • [2] A PINCHING THEOREM FOR CONFORMAL CLASSES OF WILLMORE SURFACES IN THE UNIT n-SPHERE
    Chang, Yu-Chung
    Hsu, Yi-Jung
    BULLETIN OF THE INSTITUTE OF MATHEMATICS ACADEMIA SINICA NEW SERIES, 2006, 1 (02): : 231 - 261
  • [3] A DUALITY THEOREM FOR WILLMORE SURFACES
    BRYANT, RL
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1984, 20 (01) : 23 - 53
  • [4] Rigidity of Willmore submanifolds and extremal submanifolds in the unit sphere
    Deng-Yun Yang
    Hai-Ping Fu
    Jin-Guo Zhang
    Archiv der Mathematik, 2023, 121 : 329 - 342
  • [5] Willmore Surfaces of ℝ4 and the Whitney Sphere
    Ildefonso Castro
    Francisco Urbano
    Annals of Global Analysis and Geometry, 2001, 19 : 153 - 175
  • [6] Rigidity of Willmore submanifolds and extremal submanifolds in the unit sphere
    Yang, Deng-Yun
    Fu, Hai-Ping
    Zhang, Jin-Guo
    ARCHIV DER MATHEMATIK, 2023, 121 (03) : 329 - 342
  • [7] On the Second Pinching Theorem for Willmore Hypersurfaces in a Sphere
    Li, Haizhong
    Zhang, Meng
    RESULTS IN MATHEMATICS, 2024, 79 (03)
  • [8] On the Second Pinching Theorem for Willmore Hypersurfaces in a Sphere
    Haizhong Li
    Meng Zhang
    Results in Mathematics, 2024, 79
  • [9] A rigidity theorem for hypersurfaces in a sphere
    Liu, XM
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2002, 60 (1-2): : 107 - 114
  • [10] Willmore surfaces in the unit N-sphere
    Chang, YC
    Hsu, YJ
    TAIWANESE JOURNAL OF MATHEMATICS, 2004, 8 (03): : 467 - 476