On the Second Pinching Theorem for Willmore Hypersurfaces in a Sphere

被引:0
|
作者
Haizhong Li
Meng Zhang
机构
[1] Tsinghua University,Department of Mathematical Sciences
来源
Results in Mathematics | 2024年 / 79卷
关键词
Constant mean curvature hypersurfaces; constant scalar curvature hypersurfaces; Willmore hypersurfaces; pinching theorem; 53A35; 53C24;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider n-dimensional compact Willmore hypersurface in a unit sphere. We prove a pinching theorem of ρ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho ^2$$\end{document}, which is defined as ρ2=S-nH2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho ^2=S-nH^2$$\end{document}, for n-dimensional compact Willmore hypersurface with constant mean curvature and constant scalar curvature, where H denotes the mean curvature and S the squared norm of the second fundamental form of this hypersurface.
引用
收藏
相关论文
共 50 条