Rigidity theorem for Willmore surfaces in a sphere

被引:0
|
作者
HONGWEI XU
DENGYUN YANG
机构
[1] Zhejiang University,Center of Mathematical Sciences
[2] Jiangxi Normal University,College of Mathematics and Information Science
来源
关键词
Willmore functional; Sobolev inequality; mean curvature; totally umbilical surface; 53C40; 53C24;
D O I
暂无
中图分类号
学科分类号
摘要
Let M2 be a compact Willmore surface in the (2 + p)-dimensional unit sphere S2 + p. Denote by H and S the mean curvature and the squared length of the second fundamental form of M2, respectively. Set ρ2 = S−2H2. In this note, we proved that there exists a universal positive constant C, such that if ∥ρ2∥2<C, then ρ2=0 and M2 is a totally umbilical sphere.
引用
收藏
页码:253 / 260
页数:7
相关论文
共 50 条
  • [41] The Willmore functional of surfaces
    CHEN Jing-yi
    Applied Mathematics:A Journal of Chinese Universities, 2013, (04) : 485 - 493
  • [42] Constrained Willmore Surfaces
    Soliman, Yousuf
    Chern, Albert
    Diamanti, Olga
    Knoeppel, Felix
    Pinkall, Ulrich
    Schroeder, Peter
    ACM TRANSACTIONS ON GRAPHICS, 2021, 40 (04):
  • [43] The Willmore functional of surfaces
    CHEN Jing-yi
    Applied Mathematics:A Journal of Chinese Universities(Series B), 2013, 28 (04) : 485 - 493
  • [44] Willmore surfaces in Sn
    Li, HZ
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2002, 21 (02) : 203 - 213
  • [45] RIGIDITY OF CLOSED SURFACES NON HOMEOMORPHIC TO A SPHERE IN RIEMANNEAN SPACE
    POGORELOV, A
    DOKLADY AKADEMII NAUK SSSR, 1961, 138 (01): : 51 - &
  • [46] Constrained Willmore surfaces
    Bohle, Christoph
    Peters, G. Paul
    Pinkall, Ulrich
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2008, 32 (02) : 263 - 277
  • [47] Sequences of Willmore surfaces
    Katrin Leschke
    Franz Pedit
    Mathematische Zeitschrift, 2008, 259 : 113 - 122
  • [48] Willmore Surfaces in Sn
    Haizhong Li
    Annals of Global Analysis and Geometry, 2002, 21 : 203 - 213
  • [49] Constrained Willmore surfaces
    Christoph Bohle
    G. Paul Peters
    Ulrich Pinkall
    Calculus of Variations and Partial Differential Equations, 2008, 32 : 263 - 277
  • [50] Willmore Surfaces of Revolution
    Gazzola, Filippo
    Grunau, Hans-Christoph
    Sweers, Guido
    POLYHARMONIC BOUNDARY VALUE PROBLEMS: POSITIVITY PRESERVING AND NONLINEAR HIGHER ORDER ELLIPTIC EQUATIONS IN BOUNDED DOMAINS, 2010, 1991 : 371 - 392