Parameter calibration using meta-algorithms

被引:20
|
作者
de landgraaf, W. A. [1 ]
Eiben, A. E. [1 ]
Nannen, V. [1 ]
机构
[1] Vrije Univ Amsterdam, Amsterdam, Netherlands
关键词
D O I
10.1109/CEC.2007.4424456
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Calibrating an evolutionary algorithm (EA) means finding the right values of algorithm parameters for a given problem. This issue is highly relevant, because it has a high impact (the performance of EAs does depend on appropriate parameter values), and it occurs frequently (parameter values must be set before all EA runs). This issue is also highly challenging, because finding good parameter values is a difficult task. In this paper we propose an algorithmic approach to EA calibration by describing a method, called REVAC, that can determine good parameter values in an automated manner on any given problem instance. We validate this method by comparing it with the conventional hand-based calibration and another algorithmic approach based on the classical meta-GA. Comparative experiments on a set of randomly generated problem instances with various levels of multi-modality show that GAs calibrated with REVAC can outperform those calibrated by hand and by the meta-GA.
引用
收藏
页码:71 / 78
页数:8
相关论文
共 50 条
  • [1] Meta-Algorithms in Cognitive Computing
    Sellmann, Meinolf
    IEEE INTELLIGENT SYSTEMS, 2017, 32 (04) : 35 - 39
  • [2] Time symmetrization meta-algorithms
    Hut, P
    Funato, Y
    Kokubo, E
    Makino, J
    McMillan, S
    12TH KINGSTON MEETING : COMPUTATIONAL ASTROPHYSICS, 1997, 123 : 26 - 31
  • [3] Mining Circuit Lower Bound Proofs for Meta-Algorithms
    Chen, Ruiwen
    Kabanets, Valentine
    Kolokolova, Antonina
    Shaltiel, Ronen
    Zuckerman, David
    2014 IEEE 29TH CONFERENCE ON COMPUTATIONAL COMPLEXITY (CCC), 2014, : 262 - 273
  • [4] Featre selection on large-scale issues using clustering and meta-algorithms
    Akhlaghian, Fardin
    Amiri, Shabnam
    AMAZONIA INVESTIGA, 2018, 7 (13): : 17 - 30
  • [5] Intriguing connections between meta-algorithms and the limitations of computation
    Graduate School of Informatics, Kyoto University, Kyoto-shi, 606-8501, Japan
    Tamaki, S., 1600, Institute of Electronics Information and Communication Eng., Annex 3F, 5-22, Shibakoen 3 chome, Minato-ku, Tokyo, 105-0011, Japan (96):
  • [6] Mining Circuit Lower Bound Proofs for Meta-Algorithms
    Ruiwen Chen
    Valentine Kabanets
    Antonina Kolokolova
    Ronen Shaltiel
    David Zuckerman
    computational complexity, 2015, 24 : 333 - 392
  • [7] Meta-algorithms for Software-based Packet Classification
    He, Peng
    Xie, Gaogang
    Salamatian, Kave
    Mathy, Laurent
    2014 IEEE 22ND INTERNATIONAL CONFERENCE ON NETWORK PROTOCOLS (ICNP), 2014, : 308 - 319
  • [8] Mining Circuit Lower Bound Proofs for Meta-Algorithms
    Chen, Ruiwen
    Kabanets, Valentine
    Kolokolova, Antonina
    Shaltiel, Ronen
    Zuckerman, David
    COMPUTATIONAL COMPLEXITY, 2015, 24 (02) : 333 - 392
  • [9] Sampling Based Meta-Algorithms for Accurate Multiple Sequence Alignment
    Thapar, Vishal
    Rajasekaran, Sanguthevar
    2008 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, PROCEEDINGS, 2008, : 429 - 432
  • [10] Developing Image Processing Meta-Algorithms with Data Mining of Multiple Metrics
    Leung, Kelvin
    Cunha, Alexandre
    Toga, A. W.
    Parker, D. Stott
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2014, 2014