Parameter calibration using meta-algorithms

被引:20
|
作者
de landgraaf, W. A. [1 ]
Eiben, A. E. [1 ]
Nannen, V. [1 ]
机构
[1] Vrije Univ Amsterdam, Amsterdam, Netherlands
关键词
D O I
10.1109/CEC.2007.4424456
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Calibrating an evolutionary algorithm (EA) means finding the right values of algorithm parameters for a given problem. This issue is highly relevant, because it has a high impact (the performance of EAs does depend on appropriate parameter values), and it occurs frequently (parameter values must be set before all EA runs). This issue is also highly challenging, because finding good parameter values is a difficult task. In this paper we propose an algorithmic approach to EA calibration by describing a method, called REVAC, that can determine good parameter values in an automated manner on any given problem instance. We validate this method by comparing it with the conventional hand-based calibration and another algorithmic approach based on the classical meta-GA. Comparative experiments on a set of randomly generated problem instances with various levels of multi-modality show that GAs calibrated with REVAC can outperform those calibrated by hand and by the meta-GA.
引用
收藏
页码:71 / 78
页数:8
相关论文
共 50 条
  • [41] Parameter tuning in trading algorithms using ASTA
    Hellström, T
    Holmström, K
    COMPUTATIONAL FINANCE 1999, 2000, : 343 - 357
  • [42] On using cyclic algorithms for sinusoidal parameter estimation
    Ling, J.
    Stoica, P.
    Li, J.
    Abramovich, Y. I.
    ELECTRONICS LETTERS, 2008, 44 (19) : 1160 - 1161
  • [43] Automatic TCAD Model Parameter Calibration using Autoencoder
    Eng, Matthew
    Wong, Hiu Yung
    2023 INTERNATIONAL CONFERENCE ON SIMULATION OF SEMICONDUCTOR PROCESSES AND DEVICES, SISPAD, 2023, : 277 - 280
  • [44] Using points at infinity for parameter decoupling in camera calibration
    Guillemaut, JY
    Aguado, AS
    Illingworth, J
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2005, 27 (02) : 265 - 270
  • [45] Transients for calibration of pipe roughnesses using genetic algorithms
    Simpson, A
    Vítkovsky, J
    Lambert, M
    8TH INTERNATIONAL CONFERENCE ON PRESSURE SURGES: SAFE DESIGN AND OPERATION OF INDUSTRIAL PIPE SYSTEMS, 2000, (39): : 587 - 597
  • [46] Calibration and verification of risk algorithms using logistic regression
    Yuen, J
    Twengstrom, E
    Sigvald, R
    EUROPEAN JOURNAL OF PLANT PATHOLOGY, 1996, 102 (09) : 847 - 854
  • [47] Leak detection and calibration using transients and genetic algorithms
    Vítkovsky, JP
    Simpson, AR
    Lambert, MF
    JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT-ASCE, 2000, 126 (04): : 262 - 265
  • [48] Calibration of a greenhouse climate model using evolutionary algorithms
    Guzman-Cruz, R.
    Castaneda-Miranda, R.
    Garcia-Escalanta, J. J.
    Lopez-Cruz, I. L.
    Lara-Herrera, A.
    de la Rosa, J. I.
    BIOSYSTEMS ENGINEERING, 2009, 104 (01) : 135 - 142
  • [49] Robust HPGR model calibration using genetic algorithms
    Hasanzadeh, V.
    Farzanegan, A.
    MINERALS ENGINEERING, 2011, 24 (05) : 424 - 432
  • [50] Internal combustion engine calibration using optimization algorithms
    Yu, Xunzhao
    Zhu, Ling
    Wang, Yan
    Filev, Dimitar
    Yao, Xin
    APPLIED ENERGY, 2022, 305