Parameter calibration using meta-algorithms

被引:20
|
作者
de landgraaf, W. A. [1 ]
Eiben, A. E. [1 ]
Nannen, V. [1 ]
机构
[1] Vrije Univ Amsterdam, Amsterdam, Netherlands
关键词
D O I
10.1109/CEC.2007.4424456
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Calibrating an evolutionary algorithm (EA) means finding the right values of algorithm parameters for a given problem. This issue is highly relevant, because it has a high impact (the performance of EAs does depend on appropriate parameter values), and it occurs frequently (parameter values must be set before all EA runs). This issue is also highly challenging, because finding good parameter values is a difficult task. In this paper we propose an algorithmic approach to EA calibration by describing a method, called REVAC, that can determine good parameter values in an automated manner on any given problem instance. We validate this method by comparing it with the conventional hand-based calibration and another algorithmic approach based on the classical meta-GA. Comparative experiments on a set of randomly generated problem instances with various levels of multi-modality show that GAs calibrated with REVAC can outperform those calibrated by hand and by the meta-GA.
引用
收藏
页码:71 / 78
页数:8
相关论文
共 50 条
  • [31] Calibration of a hypoplastic model using genetic algorithms
    Francisco José Mendez
    Antonio Pasculli
    Miguel Alfonso Mendez
    Nicola Sciarra
    Acta Geotechnica, 2021, 16 : 2031 - 2047
  • [32] Calibration of a hypoplastic model using genetic algorithms
    Mendez, Francisco Jose
    Pasculli, Antonio
    Mendez, Miguel Alfonso
    Sciarra, Nicola
    ACTA GEOTECHNICA, 2021, 16 (07) : 2031 - 2047
  • [33] Approach to polarimetric calibration using generic algorithms
    Xiong, Wei-Zu
    Ye, Zhong-Fu
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2007, 29 (04): : 551 - 554
  • [34] Parameter Tuning Analysis for Phase Identification Algorithms in Distribution System Model Calibration
    Pena, Bethany D.
    Blakely, Logan
    Reno, Matthew J.
    2021 IEEE KANSAS POWER AND ENERGY CONFERENCE (KPEC), 2021,
  • [35] Evaluation of global optimization algorithms for parameter calibration of a computationally intensive hydrologic model
    Zhang, Xuesong
    Srinivasan, Raghavan
    Zhao, Kaiguang
    Van Liew, Mike
    HYDROLOGICAL PROCESSES, 2009, 23 (03) : 430 - 441
  • [36] Thermal error calibration principle of precision machine and parameter genetic optimization algorithms
    Fu, Jian-Zhong
    Chen, Zi-Chen
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2003, 37 (06): : 719 - 723
  • [37] A critical survey on proton exchange membrane fuel cell parameter estimation using meta -heuristic algorithms
    Yang, Bo
    Wang, Jingbo
    Yu, Lei
    Shu, Hongchun
    Yu, Tao
    Zhang, Xiaoshun
    Yao, Wei
    Sun, Liming
    JOURNAL OF CLEANER PRODUCTION, 2020, 265
  • [38] Comparative performance analysis on parameter extraction of solar cell models using meta-heuristic algorithms
    Garip, Zeynep
    Cimen, Murat Erhan
    Boz, Ali Fuat
    JOURNAL OF THE FACULTY OF ENGINEERING AND ARCHITECTURE OF GAZI UNIVERSITY, 2021, 36 (02): : 1133 - 1144
  • [39] Retrieval parameter optimization using genetic algorithms
    Fujita, Sumio
    INFORMATION PROCESSING & MANAGEMENT, 2009, 45 (06) : 664 - 682
  • [40] Aerodynamic parameter estimation using genetic algorithms
    Shi, Yang
    Qian, Weiqi
    Wang, Qing
    He, Kaifeng
    2006 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-6, 2006, : 629 - +