Parameter calibration using meta-algorithms

被引:20
|
作者
de landgraaf, W. A. [1 ]
Eiben, A. E. [1 ]
Nannen, V. [1 ]
机构
[1] Vrije Univ Amsterdam, Amsterdam, Netherlands
关键词
D O I
10.1109/CEC.2007.4424456
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Calibrating an evolutionary algorithm (EA) means finding the right values of algorithm parameters for a given problem. This issue is highly relevant, because it has a high impact (the performance of EAs does depend on appropriate parameter values), and it occurs frequently (parameter values must be set before all EA runs). This issue is also highly challenging, because finding good parameter values is a difficult task. In this paper we propose an algorithmic approach to EA calibration by describing a method, called REVAC, that can determine good parameter values in an automated manner on any given problem instance. We validate this method by comparing it with the conventional hand-based calibration and another algorithmic approach based on the classical meta-GA. Comparative experiments on a set of randomly generated problem instances with various levels of multi-modality show that GAs calibrated with REVAC can outperform those calibrated by hand and by the meta-GA.
引用
收藏
页码:71 / 78
页数:8
相关论文
共 50 条
  • [21] Groundwater Model Calibration by Meta-Heuristic Algorithms
    O. Bozorg Haddad
    M. Mohammad Rezapour Tabari
    E. Fallah-Mehdipour
    M. A. Mariño
    Water Resources Management, 2013, 27 : 2515 - 2529
  • [22] Statistical Measurement of Software Reliability Using Meta-Heuristic Algorithms for Parameter Estimation
    Rajani
    Kumar, Naresh
    Kaswan, Kuldeep Singh
    INNOVATIVE DATA COMMUNICATION TECHNOLOGIES AND APPLICATION, ICIDCA 2021, 2022, 96 : 753 - 766
  • [23] Parameter Meta-optimization of Metaheuristic Optimization Algorithms
    Neumueller, Christoph
    Wagner, Stefan
    Kronberger, Gabriel
    Affenzeller, Michael
    COMPUTER AIDED SYSTEMS THEORY - EUROCAST 2011, PT I, 2012, 6927 : 367 - 374
  • [24] Magnetometer Calibration Using Genetic Algorithms
    Chekhov, Egor L.
    Antonov, Dmitry A.
    Kolganov, Leonid A.
    Savkin, Aleksey, V
    TEM JOURNAL-TECHNOLOGY EDUCATION MANAGEMENT INFORMATICS, 2020, 9 (03): : 907 - 914
  • [25] Estimation of Muskingum parameter by meta-heuristic algorithms
    Orouji, Hossein
    Bozorg-Haddad, Omid
    Fallah-Mehdipour, Elahe
    Marino, Miguel A.
    Barati, Reza
    PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS-WATER MANAGEMENT, 2014, 167 (06) : 365 - 367
  • [26] Estimation of Muskingum parameter by meta-heuristic algorithms
    Orouji, Hossein
    Bozorg-Haddad, Omid
    Fallah-Mehdipour, Elahe
    Marino, Miguel A.
    PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS-WATER MANAGEMENT, 2013, 166 (06) : 315 - 324
  • [27] Evaluation of different optimization algorithms in parameter calibration of Xin’anjiang model
    Shi P.
    Lu M.
    Wu H.
    Qu S.
    Li Z.
    Ding S.
    Wang X.
    Qiu C.
    Water Resources Protection, 2023, 39 (04) : 19 - 41
  • [28] Using the linearized calibration method for parameter calibration of Xin'anjiang model
    Zhao, L. P.
    Bao, W. M.
    RESOURCES, ENVIRONMENT AND ENGINEERING, 2015, : 23 - 31
  • [29] Calibration of constitutive models using genetic algorithms
    Robson, Joseph D.
    Armstrong, Daniel
    Cordell, Joseph
    Pope, Daniel
    Flint, Thomas F.
    MECHANICS OF MATERIALS, 2024, 189
  • [30] Calibration of a constitutive model using genetic algorithms
    Pal, S
    Wathugala, GW
    Kundu, S
    COMPUTERS AND GEOTECHNICS, 1996, 19 (04) : 325 - 348