Mining Circuit Lower Bound Proofs for Meta-Algorithms

被引:0
|
作者
Ruiwen Chen
Valentine Kabanets
Antonina Kolokolova
Ronen Shaltiel
David Zuckerman
机构
[1] Simon Fraser University,School of Computing Science
[2] Memorial University of Newfoundland,Department of Computer Science
[3] University of Haifa,Department of Computer Science
[4] University of Texas at Austin,Department of Computer Science
来源
computational complexity | 2015年 / 24卷
关键词
Average-case circuit lower bounds; Circuit-SAT algorithms; compression; meta-algorithms; natural property; random restrictions; shrinkage of de Morgan formulas; 03D15;
D O I
暂无
中图分类号
学科分类号
摘要
We show that circuit lower bound proofs based on the method of random restrictions yield non-trivial compression algorithms for “easy” Boolean functions from the corresponding circuit classes. The compression problem is defined as follows: given the truth table of an n-variate Boolean function f computable by some unknown small circuit from a known class of circuits, find in deterministic time poly(2n) a circuit C (no restriction on the type of C) computing f so that the size of C is less than the trivial circuit size 2n/n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${2^n/n}$$\end{document}. We get non-trivial compression for functions computable by AC0 circuits, (de Morgan) formulas, and (read-once) branching programs of the size for which the lower bounds for the corresponding circuit class are known.
引用
收藏
页码:333 / 392
页数:59
相关论文
共 50 条
  • [1] Mining Circuit Lower Bound Proofs for Meta-Algorithms
    Chen, Ruiwen
    Kabanets, Valentine
    Kolokolova, Antonina
    Shaltiel, Ronen
    Zuckerman, David
    2014 IEEE 29TH CONFERENCE ON COMPUTATIONAL COMPLEXITY (CCC), 2014, : 262 - 273
  • [2] Mining Circuit Lower Bound Proofs for Meta-Algorithms
    Chen, Ruiwen
    Kabanets, Valentine
    Kolokolova, Antonina
    Shaltiel, Ronen
    Zuckerman, David
    COMPUTATIONAL COMPLEXITY, 2015, 24 (02) : 333 - 392
  • [3] Developing Image Processing Meta-Algorithms with Data Mining of Multiple Metrics
    Leung, Kelvin
    Cunha, Alexandre
    Toga, A. W.
    Parker, D. Stott
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2014, 2014
  • [4] Meta-Algorithms in Cognitive Computing
    Sellmann, Meinolf
    IEEE INTELLIGENT SYSTEMS, 2017, 32 (04) : 35 - 39
  • [5] Time symmetrization meta-algorithms
    Hut, P
    Funato, Y
    Kokubo, E
    Makino, J
    McMillan, S
    12TH KINGSTON MEETING : COMPUTATIONAL ASTROPHYSICS, 1997, 123 : 26 - 31
  • [6] Parameter calibration using meta-algorithms
    de landgraaf, W. A.
    Eiben, A. E.
    Nannen, V.
    2007 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-10, PROCEEDINGS, 2007, : 71 - 78
  • [7] Intriguing connections between meta-algorithms and the limitations of computation
    Graduate School of Informatics, Kyoto University, Kyoto-shi, 606-8501, Japan
    Tamaki, S., 1600, Institute of Electronics Information and Communication Eng., Annex 3F, 5-22, Shibakoen 3 chome, Minato-ku, Tokyo, 105-0011, Japan (96):
  • [8] Meta-algorithms for Software-based Packet Classification
    He, Peng
    Xie, Gaogang
    Salamatian, Kave
    Mathy, Laurent
    2014 IEEE 22ND INTERNATIONAL CONFERENCE ON NETWORK PROTOCOLS (ICNP), 2014, : 308 - 319
  • [9] Sampling Based Meta-Algorithms for Accurate Multiple Sequence Alignment
    Thapar, Vishal
    Rajasekaran, Sanguthevar
    2008 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, PROCEEDINGS, 2008, : 429 - 432
  • [10] An Exponential Lower Bound for Proofs in Focused Calculi
    Jalali, Raheleh
    LOGIC, LANGUAGE, INFORMATION, AND COMPUTATION (WOLLIC 2019), 2019, 11541 : 342 - 355