Multilabel Graph based Approach for Knee Cartilage Segmentation: Data from the Osteoarthritis Initiative

被引:0
|
作者
Gan, Hong-Seng [1 ]
Tan, Tian-Swee [1 ]
Sayuti, Khairil Amir [2 ]
Karim, Ahmad Helmy Abdul [2 ]
Kadir, Mohammed Rafiq Abdul [3 ]
机构
[1] Univ Teknol Malaysia, Fac Biosci & Med Engn, Dept Biotechnol & Med Engn, Skudai 81310, Johor, Malaysia
[2] Univ Sains Malaysia, Sch Med Sci, Dept Radiol, Kubang Kerian 16150, Kelantan, Malaysia
[3] Univ Teknol Malaysia, Fac Biosci & Med Engn, Dept Clin Sci, Skudai 81310, Johor, Malaysia
关键词
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Knee osteoarthritis is the second most dreadful disease after cardiovascular diseases. Affected patients will not have any effective cure and face the risk of undergoing total knee replacement in chronic stage. Quantitative analysis enhances our understanding of the pathophysiology of osteoarthritis. Nonetheless, manual segmentation is notorious for time-and resourceintensive. Hence, we propose a multilabel, semi-automated segmentation method based on random walks to facilitate the segmentation process. Random walks method is robust to noise, allows multiple objects segmentation and achieves global minimum solution. Our experiment results indicated that random walks achieved greater efficiency than manual segmentation while preserved the quality of knee cartilage segmentation as measured by the Dice's coefficient.
引用
收藏
页码:210 / 213
页数:4
相关论文
共 50 条
  • [1] Interactive knee cartilage extraction using efficient segmentation software: Data from the osteoarthritis initiative
    Gan, Hong-Seng
    Tan, Tian-Swee
    Wong, Liang-Xuan
    Tham, Weng-Kit
    Sayuti, Khairil Amir
    Karim, Ahmad Helmy Abdul
    Kadir, Mohammed Rafiq bin Abdul
    [J]. BIO-MEDICAL MATERIALS AND ENGINEERING, 2014, 24 (06) : 3145 - 3157
  • [2] A Coarse-to-Fine Framework for Automated Knee Bone and Cartilage Segmentation Data from the Osteoarthritis Initiative
    Yang Deng
    Lei You
    Yanfei Wang
    Xiaobo Zhou
    [J]. Journal of Digital Imaging, 2021, 34 : 833 - 840
  • [3] A Coarse-to-Fine Framework for Automated Knee Bone and Cartilage Segmentation Data from the Osteoarthritis Initiative
    Deng, Yang
    You, Lei
    Wang, Yanfei
    Zhou, Xiaobo
    [J]. JOURNAL OF DIGITAL IMAGING, 2021, 34 (04) : 833 - 840
  • [4] A complex network based approach for knee Osteoarthritis detection: Data from the Osteoarthritis initiative
    Ribas, Lucas C.
    Riad, Rabia
    Jennane, Rachid
    Bruno, Odemir M.
    [J]. BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 71
  • [5] Analysis of Parameters' Effects in Semi-Automated Knee Cartilage Segmentation Model: Data from the Osteoarthritis Initiative
    Gan, Hong-Seng
    Karim, Ahmad Helmy Abdul
    Sayuti, Khairil Amir
    Tan, Tian-Swee
    Kadir, Mohammed Rafiq Abdul
    [J]. INTERNATIONAL CONFERENCE ON MATHEMATICS, ENGINEERING AND INDUSTRIAL APPLICATIONS 2016 (ICOMEIA2016), 2016, 1775
  • [6] Unifying the seeds auto-generation (SAGE) with knee cartilage segmentation framework: data from the osteoarthritis initiative
    Hong-Seng Gan
    Khairil Amir Sayuti
    Muhammad Hanif Ramlee
    Yeng-Seng Lee
    Wan Mahani Hafizah Wan Mahmud
    Ahmad Helmy Abdul Karim
    [J]. International Journal of Computer Assisted Radiology and Surgery, 2019, 14 : 755 - 762
  • [7] Unifying the seeds auto-generation (SAGE) with knee cartilage segmentation framework: data from the osteoarthritis initiative
    Gan, Hong-Seng
    Sayuti, Khairil Amir
    Ramlee, Muhammad Hanif
    Lee, Yeng-Seng
    Mahmud, Wan Mahani Hafizah Wan
    Karim, Ahmad Helmy Abdul
    [J]. INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2019, 14 (05) : 755 - 762
  • [8] ATLAS BASED METHOD FOR THE AUTOMATED SEGMENTATION AND QUANTIFICATION OF KNEE FEATURES: DATA FROM THE OSTEOARTHRITIS INITIATIVE
    Tamez-Pena, Jose
    Gonzalez, Patricia
    Farber, Joshua
    Baum, Karl
    Schreyer, Eduard
    Totterman, Saara
    [J]. 2011 8TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, 2011, : 1484 - 1487
  • [9] DEEP LEARNING APPROACH TO MEASURE CARTILAGE VOLUME FOR USE IN LARGE LONGITUDINAL STUDIES OF KNEE OSTEOARTHRITIS: DATA FROM THE OSTEOARTHRITIS INITIATIVE
    Duryea, J.
    Preiswerk, F.
    Haghi, H. Ragati
    Amesbury, R.
    Laffaye, T.
    Stein, R.
    Mathiessen, A.
    Kwoh, K. C.
    [J]. OSTEOARTHRITIS AND CARTILAGE, 2023, 31 : S83 - S83
  • [10] Unsupervised Segmentation and Quantification of Anatomical Knee Features: Data From the Osteoarthritis Initiative
    Tamez-Pena, Jose G.
    Farber, Joshua
    Gonzalez, Patricia C.
    Schreyer, Edward
    Schneider, Erika
    Totterman, Saara
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2012, 59 (04) : 1177 - 1186