A complex network based approach for knee Osteoarthritis detection: Data from the Osteoarthritis initiative

被引:15
|
作者
Ribas, Lucas C. [1 ,4 ]
Riad, Rabia [2 ]
Jennane, Rachid [3 ]
Bruno, Odemir M. [1 ,4 ]
机构
[1] Univ Sao Paulo, Inst Math & Comp Sci, Ave Trabalhador Sao Carlense 400, BR-13566590 Sao Carlos, SP, Brazil
[2] Ibn Zohr Univ, ERMAM FPO, Ouarzazate 45000, Morocco
[3] Univ Orleans, CNRS, UMR 7013, IDP Lab, Orleans 45067, France
[4] Univ Sao Paulo, Sao Carlos Inst Phys, POB 369, BR-13560970 Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Texture analysis; Networks; Feature extraction; OsteoArthritis detection; TEXTURE ANALYSIS; FRACTAL ANALYSIS; TRABECULAR BONE; CLASSIFICATION; DISTANCE;
D O I
10.1016/j.bspc.2021.103133
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
OsteoArthritis (OA) is a joint disease caused by cartilage loss in the joint and bone changes. Early knee OA prediction based on bone texture analysis is a difficult task in medical image analysis. This paper presents a new approach based on concepts of complex network theory to extract texture features related to OA from radiographic knee X-ray images. An X-ray image is modeled into a complex network mapping each pixel into a node and connecting two nodes based on a given Euclidean distance. Then, a set of thresholds is applied to remove some edges and reveal texture properties. Our proposed model employs a specific strategy to automatically select the set of thresholds. A new set of statistical measures extracted from the network are used to compute a feature vector evaluated in a classification experiment using knee X-ray images from the OsteoArthritis Initiative (OAI) database. Our proposed approach is compared to state-of-the-art learning models (AlexNet, VGG, GoogleNet, InceptionV3, ResNet, DenseNet and EfficientNet) as well as to different traditional texture descriptors. Results show that the proposed method is competitive and is potentially promising for early knee OA detection.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Texture analysis using complex wavelet decomposition for knee osteoarthritis detection: Data from the osteoarthritis initiative
    Riad, Rabia
    Jennane, Rachid
    Brahim, Abdelbasset
    Janvier, Thomas
    Toumi, Hechmi
    Lespessailles, Eric
    [J]. COMPUTERS & ELECTRICAL ENGINEERING, 2018, 68 : 181 - 191
  • [2] Knee Osteoarthritis Detection Using Power Spectral Density: Data from the OsteoArthritis Initiative
    Brahim, Abdelbasset
    Riad, Rabia
    Jennane, Rachid
    [J]. COMPUTER ANALYSIS OF IMAGES AND PATTERNS, CAIP 2019, PT II, 2019, 11679 : 480 - 487
  • [3] Distinct subtypes of knee osteoarthritis: data from the Osteoarthritis Initiative
    Waarsing, Jan H.
    Bierma-Zeinstra, Sita M. A.
    Weinans, Harrie
    [J]. RHEUMATOLOGY, 2015, 54 (09) : 1650 - 1658
  • [4] Knee osteoarthritis image registration: Data from the Osteoarthritis Initiative
    Galvan-Tejada, Jorge I.
    Celaya-Padilla, Jose M.
    Trevino, Victor
    Tamez-Pena, Jose G.
    [J]. MEDICAL IMAGING 2015: COMPUTER-AIDED DIAGNOSIS, 2015, 9414
  • [5] Dietary Patterns and Progression of Knee Osteoarthritis: Data from the Osteoarthritis Initiative
    Xu, Chang
    Marchand, Nathalie E.
    Driban, Jeffrey B.
    McAlindon, Timothy
    Eaton, Charles B.
    Lu, Bing
    [J]. AMERICAN JOURNAL OF CLINICAL NUTRITION, 2020, 111 (03): : 667 - 676
  • [6] IDENTIFICATION OF CLINICAL PHENOTYPES IN KNEE OSTEOARTHRITIS: DATA FROM THE OSTEOARTHRITIS INITIATIVE
    Knoop, J.
    van der Leeden, M.
    Thorstensson, C.
    Roorda, L.
    Lems, W. F.
    Knol, D.
    Steultjens, M.
    Dekker, J.
    [J]. OSTEOARTHRITIS AND CARTILAGE, 2011, 19 : S130 - S131
  • [7] Multilabel Graph based Approach for Knee Cartilage Segmentation: Data from the Osteoarthritis Initiative
    Gan, Hong-Seng
    Tan, Tian-Swee
    Sayuti, Khairil Amir
    Karim, Ahmad Helmy Abdul
    Kadir, Mohammed Rafiq Abdul
    [J]. 2014 IEEE CONFERENCE ON BIOMEDICAL ENGINEERING AND SCIENCES (IECBES), 2014, : 210 - 213
  • [8] Association of Knee Injuries With Accelerated Knee Osteoarthritis Progression: Data From the Osteoarthritis Initiative
    Driban, Jeffrey B.
    Eaton, Charles B.
    Lo, Grace H.
    Ward, Robert J.
    Lu, Bing
    McAlindon, Timothy E.
    [J]. ARTHRITIS CARE & RESEARCH, 2014, 66 (11) : 1673 - 1679
  • [9] KNEE INJURIES ARE ASSOCIATED WITH THE ONSET OF RAPID KNEE OSTEOARTHRITIS: DATA FROM THE OSTEOARTHRITIS INITIATIVE
    Driban, J. B.
    Eaton, C. B.
    Lo, G. H.
    Barbe, M. F.
    Ward, R. J.
    Lu, B.
    McAlindon, T. E.
    [J]. OSTEOARTHRITIS AND CARTILAGE, 2014, 22 : S32 - S33
  • [10] Disease Severity and Knee Extensor Force in Knee Osteoarthritis: Data From the Osteoarthritis Initiative
    Berger, Michael J.
    Kean, Crystal O.
    Goela, Aashish
    Doherty, Timothy J.
    [J]. ARTHRITIS CARE & RESEARCH, 2012, 64 (05) : 729 - 734