Analysis of Parameters' Effects in Semi-Automated Knee Cartilage Segmentation Model: Data from the Osteoarthritis Initiative

被引:2
|
作者
Gan, Hong-Seng [1 ]
Karim, Ahmad Helmy Abdul [2 ]
Sayuti, Khairil Amir [3 ]
Tan, Tian-Swee [4 ]
Kadir, Mohammed Rafiq Abdul [5 ]
机构
[1] Univ Kuala Lumpur, British Malaysian Inst, Med Engn Technol Sect, Gomhak 53100, Selangor, Malaysia
[2] KPJ Ipoh Specialist Hosp, Diagnost Imaging Serv, Ipoh 30350, Perak, Malaysia
[3] Univ Sains Malaysia, Sch Med Sci, Dept Radiol, Kubang Kerian 16150, Kelantan, Malaysia
[4] Univ Teknol Malaysia, Fac Biosci & Med Engn, Dept Biotechnol & Med Engn, Skudai 81310, Johor, Malaysia
[5] Univ Teknol Malaysia, Fac Biosci & Med Engn, Dept Clin Sci, Skudai 81310, Johor, Malaysia
关键词
D O I
10.1063/1.4965172
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Unlike automated segmentation,the accuracy of semi-automated segmentation is affected by pertinent parameters such as observer, type of methods and type of cartilage. In this paper, we investigated the effect of these parameters on segmentation results. Based on Dice similarity index obtained from fifteen normal and ten diseased magnetic resonance images, a parameter estimation model was constructed to study the impact of each parameter. Then, we conducted deviance test to verify the effect's significance. Our result showed that implementation of the proposed segmentation model would introduce positive effect (+0.12) on reproducibility compared to conventional random walks model. Furthermore, we have found intriguing results indicating cartilage normality has diminished effect on reproducibility and tibial cartilage's result could be influenced by external factors as well. Lastly, our findings highlighted on the necessity of refinement for semi automated segmentation.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Quantification of cartilage loss in local regions of knee joints using semi-automated segmentation software: analysis of longitudinal data from the Osteoarthritis Initiative (OAI)
    Iranpour-Boroujeni, T.
    Watanabe, A.
    Bashtar, R.
    Yoshioka, H.
    Duryea, J.
    [J]. OSTEOARTHRITIS AND CARTILAGE, 2011, 19 (03) : 309 - 314
  • [2] COMPARISON OF SEMI-AUTOMATED AND MANUAL SEGMENTATION OF KNEE CARTILAGE
    Yu, H. J.
    Chang, A.
    Fukuda, Y.
    Terada, Y.
    Nozaki, T.
    Yoshioka, H.
    [J]. OSTEOARTHRITIS AND CARTILAGE, 2016, 24 : S311 - S311
  • [3] A Coarse-to-Fine Framework for Automated Knee Bone and Cartilage Segmentation Data from the Osteoarthritis Initiative
    Yang Deng
    Lei You
    Yanfei Wang
    Xiaobo Zhou
    [J]. Journal of Digital Imaging, 2021, 34 : 833 - 840
  • [4] A Coarse-to-Fine Framework for Automated Knee Bone and Cartilage Segmentation Data from the Osteoarthritis Initiative
    Deng, Yang
    You, Lei
    Wang, Yanfei
    Zhou, Xiaobo
    [J]. JOURNAL OF DIGITAL IMAGING, 2021, 34 (04) : 833 - 840
  • [5] SEMI-AUTOMATED QUANTIFICATION OF CARTILAGE VOLUME IN KNEE OSTEOARTHRITIS: RESPONSIVENESS AND CONCURRENT VALIDITY
    Mathiessen, A.
    Huang, E.
    Ashbeck, E. L.
    Kwoh, C.
    Duryea, J.
    [J]. OSTEOARTHRITIS AND CARTILAGE, 2019, 27 : S317 - S318
  • [6] Quantification of bone marrow lesion volume and volume change using semi-automated segmentation: data from the osteoarthritis initiative
    Pang, Jincheng
    Driban, Jeffrey B.
    Destenaves, Geoffroy
    Miller, Eric
    Lo, Grace H.
    Ward, Robert J.
    Price, Lori Lyn
    Lynch, John A.
    Eaton, Charles B.
    Eckstein, Felix
    McAlindon, Timothy E.
    [J]. BMC MUSCULOSKELETAL DISORDERS, 2013, 14
  • [7] Quantification of bone marrow lesion volume and volume change using semi-automated segmentation: data from the osteoarthritis initiative
    Jincheng Pang
    Jeffrey B Driban
    Geoffroy Destenaves
    Eric Miller
    Grace H Lo
    Robert J Ward
    Lori Lyn Price
    John A Lynch
    Charles B Eaton
    Felix Eckstein
    Timothy E McAlindon
    [J]. BMC Musculoskeletal Disorders, 14
  • [8] Multilabel Graph based Approach for Knee Cartilage Segmentation: Data from the Osteoarthritis Initiative
    Gan, Hong-Seng
    Tan, Tian-Swee
    Sayuti, Khairil Amir
    Karim, Ahmad Helmy Abdul
    Kadir, Mohammed Rafiq Abdul
    [J]. 2014 IEEE CONFERENCE ON BIOMEDICAL ENGINEERING AND SCIENCES (IECBES), 2014, : 210 - 213
  • [9] Automated Ehexahedral meshing of knee cartilage structures - application to data from the osteoarthritis initiative
    Rodriguez-Vila, B.
    Sanchez-Gonzalez, P.
    Oropesa, I.
    Gomez, E. J.
    Pierce, D. M.
    [J]. COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING, 2017, 20 (14) : 1543 - 1553
  • [10] Automated segmentation of knee bone and cartilage combining statistical shape knowledge and convolutional neural networks: Data from the Osteoarthritis Initiative
    Ambellan, Felix
    Tack, Alexander
    Ehlke, Moritz
    Zachow, Stefan
    [J]. MEDICAL IMAGE ANALYSIS, 2019, 52 : 109 - 118