ATLAS BASED METHOD FOR THE AUTOMATED SEGMENTATION AND QUANTIFICATION OF KNEE FEATURES: DATA FROM THE OSTEOARTHRITIS INITIATIVE

被引:0
|
作者
Tamez-Pena, Jose [1 ]
Gonzalez, Patricia [1 ]
Farber, Joshua [1 ]
Baum, Karl [1 ]
Schreyer, Eduard [1 ]
Totterman, Saara [1 ]
机构
[1] Qmetr Technol LLC, Rochester, NY USA
关键词
OA; Atlas-Based Segmentation; Knee; DESS MRI; CARTILAGE MORPHOLOGY;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
This paper presents a fully unsupervised segmentation method for the segmentation of 3D DESS MRI images of the human knee. Five MRI knees manually segmented by human experts are used as reference atlases to automatically segment subsequent MRI images. The five segmentations are averaged to create the knee segmentation. The methodology was tested on the pilot Osteoarthritis Initiative (OAI) image set of MRI DESS sequences. The data includes longitudinal images from healthy normals and subjects with osteoarthritis (OA) scanned twice at baseline and at the 24 month follow-up. The segmentation methodology was able to create precise cartilage segmentations of the knees that were used to extract volume, thickness and subchondral bone plate curvature information of the knee. The quantitative thickness showed precisions ranging from 0.025mm to 0.051mm. The longitudinal reproducibility of the cartilage thickness measurement methodology showed intra-class correlations coefficients (ICC) ranging from 0.39 to 0.79.
引用
收藏
页码:1484 / 1487
页数:4
相关论文
共 50 条
  • [1] Unsupervised Segmentation and Quantification of Anatomical Knee Features: Data From the Osteoarthritis Initiative
    Tamez-Pena, Jose G.
    Farber, Joshua
    Gonzalez, Patricia C.
    Schreyer, Edward
    Schneider, Erika
    Totterman, Saara
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2012, 59 (04) : 1177 - 1186
  • [2] AUTOMATED MRI ATLAS-BASED STANDARDIZED QUANTIFICATION OF SUBCHONDRAL BONE PLATE CURVATURE: DATA FROM THE OSTEOARTHRITIS INITIATIVE
    Tamez-Pena, J. G.
    Gonzalez, P. C.
    Schreyer, E. H.
    Farber, J. M.
    Totterman, S. M.
    [J]. OSTEOARTHRITIS AND CARTILAGE, 2010, 18 : S60 - S60
  • [3] Fully automated subchondral bone segmentation from knee MR images: Data from the Osteoarthritis Initiative
    Gandhamal, Akash
    Talbar, Sanjay
    Gajre, Suhas
    Razak, Ruslan
    Hani, Ahmad Fadzil M.
    Kumar, Dileep
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2017, 88 : 110 - 125
  • [4] A Coarse-to-Fine Framework for Automated Knee Bone and Cartilage Segmentation Data from the Osteoarthritis Initiative
    Yang Deng
    Lei You
    Yanfei Wang
    Xiaobo Zhou
    [J]. Journal of Digital Imaging, 2021, 34 : 833 - 840
  • [5] A Coarse-to-Fine Framework for Automated Knee Bone and Cartilage Segmentation Data from the Osteoarthritis Initiative
    Deng, Yang
    You, Lei
    Wang, Yanfei
    Zhou, Xiaobo
    [J]. JOURNAL OF DIGITAL IMAGING, 2021, 34 (04) : 833 - 840
  • [6] Multilabel Graph based Approach for Knee Cartilage Segmentation: Data from the Osteoarthritis Initiative
    Gan, Hong-Seng
    Tan, Tian-Swee
    Sayuti, Khairil Amir
    Karim, Ahmad Helmy Abdul
    Kadir, Mohammed Rafiq Abdul
    [J]. 2014 IEEE CONFERENCE ON BIOMEDICAL ENGINEERING AND SCIENCES (IECBES), 2014, : 210 - 213
  • [7] ATLAS-BASED STANDARDIZED QUANTIFICATION OF CARTILAGE THICKNESS MAPS: DATA FROM THE OSTEOARTHRITIS INITIATIVE
    Tamez-Pena, J. G.
    Gonzalez, P. C.
    Schreyer, E. H.
    Farber, J. M.
    Totterman, S. M.
    [J]. OSTEOARTHRITIS AND CARTILAGE, 2010, 18 : S64 - S65
  • [8] An Automatic Knee Osteoarthritis Diagnosis Method Based on Deep Learning: Data from the Osteoarthritis Initiative
    Wang, Yifan
    Wang, Xianan
    Gao, Tianning
    Du, Le
    Liu, Wei
    [J]. JOURNAL OF HEALTHCARE ENGINEERING, 2021, 2021
  • [9] Analysis of Parameters' Effects in Semi-Automated Knee Cartilage Segmentation Model: Data from the Osteoarthritis Initiative
    Gan, Hong-Seng
    Karim, Ahmad Helmy Abdul
    Sayuti, Khairil Amir
    Tan, Tian-Swee
    Kadir, Mohammed Rafiq Abdul
    [J]. INTERNATIONAL CONFERENCE ON MATHEMATICS, ENGINEERING AND INDUSTRIAL APPLICATIONS 2016 (ICOMEIA2016), 2016, 1775
  • [10] Automated segmentation and analysis of normal and osteoarthritic knee menisci from magnetic resonance images - data from the Osteoarthritis Initiative
    Paproki, A.
    Engstrom, C.
    Chandra, S. S.
    Neubert, A.
    Fripp, J.
    Crozier, S.
    [J]. OSTEOARTHRITIS AND CARTILAGE, 2014, 22 (09) : 1259 - 1270