Finding regulatory modules through large-scale gene-expression data analysis

被引:22
|
作者
Kloster, M
Tang, C [1 ]
Wingreen, NS
机构
[1] NEC Labs Amer Inc, Princeton, NJ 08540 USA
[2] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[3] Peking Univ, Ctr Theoret Biol, Beijing 100871, Peoples R China
[4] Princeton Univ, Dept Mol Biol, Princeton, NJ 08544 USA
关键词
D O I
10.1093/bioinformatics/bti096
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: The use of gene microchips has enabled a rapid accumulation of gene-expression data. One of the major challenges of analyzing this data is the diversity, in both size and signal strength, of the various modules in the gene regulatory networks of organisms. Results: Based on the iterative signature algorithm [Bergmann,S., Ihmels,J. and Barkai,N. (2002) Phys. Rev. E 67, 031902], we present an algorithm-the progressive iterative signature algorithm (PISA)-that, by sequentially eliminating modules, allows unsupervised identification of both large and small regulatory modules. We applied PISA to a large set of yeast gene-expression data, and, using the Gene Ontology database as a reference, found that the algorithm is much better able to identify regulatory modules than methods based on high-throughput transcription-factor binding experiments or on comparative genomics.
引用
收藏
页码:1172 / 1179
页数:8
相关论文
共 50 条
  • [21] Disease Gene Characterization through Large-Scale Co-Expression Analysis
    Day, Allen
    Dong, Jun
    Funari, Vincent A.
    Harry, Bret
    Strom, Samuel P.
    Cohn, Dan H.
    Nelson, Stanley F.
    [J]. PLOS ONE, 2009, 4 (12):
  • [22] SCANPY: large-scale single-cell gene expression data analysis
    F. Alexander Wolf
    Philipp Angerer
    Fabian J. Theis
    [J]. Genome Biology, 19
  • [23] SCANPY: large-scale single-cell gene expression data analysis
    Wolf, F. Alexander
    Angerer, Philipp
    Theis, Fabian J.
    [J]. GENOME BIOLOGY, 2018, 19
  • [24] Large-scale gene expression data analysis: A new challenge to computational biologists
    Zhang, MQ
    [J]. GENOME RESEARCH, 1999, 9 (08) : 681 - 688
  • [25] GENE DISCOVERY METHODS FROM LARGE-SCALE GENE EXPRESSION DATA
    Shimizu, Akifumi
    Yano, Kentaro
    [J]. QUANTUM BIO-INFORMATICS III: FROM QUANTUM INFORMATION TO BIO-INFORMATICS, 2010, 26 : 489 - +
  • [26] Automated Protocol for Large-Scale Modeling of Gene Expression Data
    Hall, Michelle Lynn
    Calkins, David
    Sherman, Woody
    [J]. Journal of Chemical Information and Modeling, 2016, 56 (11) : 2216 - 2224
  • [27] Discovery of Genes Essential for Heme Biosynthesis through Large-Scale Gene Expression Analysis
    Nilsson, Roland
    Schultz, Iman J.
    Pierce, Eric L.
    Soltis, Kathleen A.
    Naranuntarat, Amornrat
    Ward, Diane M.
    Baughman, Joshua M.
    Paradkar, Prasad N.
    Kingsley, Paul D.
    Culotta, Valeria C.
    Kaplan, Jerry
    Palis, James
    Paw, Barry H.
    Mootha, Vamsi K.
    [J]. CELL METABOLISM, 2009, 10 (02) : 119 - 130
  • [28] Urothelial cancer gene regulatory networks inferred from large-scale RNAseq, Bead and Oligo gene expression data
    Simoes, Ricardo de Matos
    Dalleau, Sabine
    Williamson, Kate E.
    Emmert-Streib, Frank
    [J]. BMC SYSTEMS BIOLOGY, 2015, 9
  • [29] Latent network-based representations for large-scale gene expression data analysis
    Dhifli, Wajdi
    Puig, Julia
    Dispot, Aurelien
    Elati, Mohamed
    [J]. BMC BIOINFORMATICS, 2019, 19 (Suppl 13)
  • [30] GEDI: a user-friendly toolbox for analysis of large-scale gene expression data
    André Fujita
    João R Sato
    Carlos E Ferreira
    Mari C Sogayar
    [J]. BMC Bioinformatics, 8