Finding regulatory modules through large-scale gene-expression data analysis

被引:22
|
作者
Kloster, M
Tang, C [1 ]
Wingreen, NS
机构
[1] NEC Labs Amer Inc, Princeton, NJ 08540 USA
[2] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[3] Peking Univ, Ctr Theoret Biol, Beijing 100871, Peoples R China
[4] Princeton Univ, Dept Mol Biol, Princeton, NJ 08544 USA
关键词
D O I
10.1093/bioinformatics/bti096
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: The use of gene microchips has enabled a rapid accumulation of gene-expression data. One of the major challenges of analyzing this data is the diversity, in both size and signal strength, of the various modules in the gene regulatory networks of organisms. Results: Based on the iterative signature algorithm [Bergmann,S., Ihmels,J. and Barkai,N. (2002) Phys. Rev. E 67, 031902], we present an algorithm-the progressive iterative signature algorithm (PISA)-that, by sequentially eliminating modules, allows unsupervised identification of both large and small regulatory modules. We applied PISA to a large set of yeast gene-expression data, and, using the Gene Ontology database as a reference, found that the algorithm is much better able to identify regulatory modules than methods based on high-throughput transcription-factor binding experiments or on comparative genomics.
引用
收藏
页码:1172 / 1179
页数:8
相关论文
共 50 条
  • [41] Large-scale CDNA microarray analysis of gene expression in epilepsy
    Wei, KC
    Wu, T
    Chang, CN
    Shin, JW
    [J]. EPILEPSIA, 2005, 46 : 198 - 198
  • [42] GECKO: a complete large-scale gene expression analysis platform
    Theilhaber, J
    Ulyanov, A
    Malanthara, A
    Cole, J
    Xu, DP
    Nahf, R
    Heuer, M
    Brockel, C
    Bushnell, S
    [J]. BMC BIOINFORMATICS, 2004, 5 (1)
  • [43] Large-Scale Analysis of Putative Soybean Regulatory Gene Expression Identifies a Myb Gene Involved in Soybean Nodule Development
    Libault, Marc
    Joshi, Trupti
    Takahashi, Kaori
    Hurley-Sommer, Andrea
    Puricelli, Kari
    Blake, Sean
    Finger, Richard E.
    Taylor, Christopher G.
    Xu, Dong
    Nguyen, Henry T.
    Stacey, Gary
    [J]. PLANT PHYSIOLOGY, 2009, 151 (03) : 1207 - 1220
  • [44] A new tool for rheumatology:: large-scale analysis of gene expression
    Lequerré, T
    Coulouarn, C
    Derambure, C
    Lefebvre, G
    Vittecoq, O
    Daveau, M
    Salier, JP
    Le Loët, X
    [J]. JOINT BONE SPINE, 2003, 70 (04) : 248 - 256
  • [45] Large-scale analysis of gene expression: Methods and application to the kidney
    Cheval, L
    Virlon, B
    Billon, E
    Aude, JC
    Elalouf, JM
    Doucet, A
    [J]. JOURNAL OF NEPHROLOGY, 2002, 15 : S170 - S183
  • [46] Large-scale gene expression analysis in molecular target discovery
    Orr, MS
    Scherf, U
    [J]. LEUKEMIA, 2002, 16 (04) : 473 - 477
  • [47] Large-scale gene expression analysis in molecular target discovery
    MS Orr
    U Scherf
    [J]. Leukemia, 2002, 16 : 473 - 477
  • [48] YMD: A microarray database for large-scale gene expression analysis
    Cheung, KH
    White, K
    Hager, J
    Gerstein, M
    Reinke, V
    Nelson, K
    Masiar, P
    Srivastava, R
    Li, YL
    Li, J
    Zhao, HY
    Li, JM
    Allison, DB
    Snyder, M
    Miller, P
    Williams, K
    [J]. AMIA 2002 SYMPOSIUM, PROCEEDINGS: BIOMEDICAL INFORMATICS: ONE DISCIPLINE, 2002, : 140 - 144
  • [49] Finding needles in large-scale multivariate data haystacks
    Ward, M
    [J]. IEEE COMPUTER GRAPHICS AND APPLICATIONS, 2004, 24 (05) : 16 - 19
  • [50] covRNA: discovering covariate associations in large-scale gene expression data
    Urban, Lara
    Remmele, Christian W.
    Dittrich, Marcus
    Schwarz, Roland F.
    Mueller, Tobias
    [J]. BMC RESEARCH NOTES, 2020, 13 (01)