SCANPY: large-scale single-cell gene expression data analysis

被引:0
|
作者
F. Alexander Wolf
Philipp Angerer
Fabian J. Theis
机构
[1] Institute of Computational Biology,Helmholtz Zentrum München – German Research Center for Environmental Health
[2] Technische Universität München,Department of Mathematics
来源
关键词
Single-cell transcriptomics; Machine learning; Scalability; Graph analysis; Clustering; Pseudotemporal ordering; Trajectory inference; Differential expression testing; Visualization; Bioinformatics;
D O I
暂无
中图分类号
学科分类号
摘要
Scanpy is a scalable toolkit for analyzing single-cell gene expression data. It includes methods for preprocessing, visualization, clustering, pseudotime and trajectory inference, differential expression testing, and simulation of gene regulatory networks. Its Python-based implementation efficiently deals with data sets of more than one million cells (https://github.com/theislab/Scanpy). Along with Scanpy, we present AnnData, a generic class for handling annotated data matrices (https://github.com/theislab/anndata).
引用
收藏
相关论文
共 50 条
  • [1] SCANPY: large-scale single-cell gene expression data analysis
    Wolf, F. Alexander
    Angerer, Philipp
    Theis, Fabian J.
    [J]. GENOME BIOLOGY, 2018, 19
  • [2] Single-cell gene regulation network inference by large-scale data integration
    Dong, Xin
    Tang, Ke
    Xu, Yunfan
    Wei, Hailin
    Han, Tong
    Wang, Chenfei
    [J]. NUCLEIC ACIDS RESEARCH, 2022, 50 (21) : E126
  • [3] Analysis of large-scale gene expression data
    Sherlock, G
    [J]. CURRENT OPINION IN IMMUNOLOGY, 2000, 12 (02) : 201 - 205
  • [4] Identification of genetic variants that impact gene co-expression relationships using large-scale single-cell data
    Li, Shuang
    Schmid, Katharina T.
    de Vries, Dylan H.
    Korshevniuk, Maryna
    Losert, Corinna
    Oelen, Roy
    van Blokland, Irene, V
    Groot, Hilde E.
    Swertz, Morris A.
    van der Harst, Pim
    Westra, Harm-Jan
    van der Wijst, Monique G. P.
    Heinig, Matthias
    Franke, Lude
    [J]. GENOME BIOLOGY, 2023, 24 (01)
  • [5] Identification of genetic variants that impact gene co-expression relationships using large-scale single-cell data
    Shuang Li
    Katharina T. Schmid
    Dylan H. de Vries
    Maryna Korshevniuk
    Corinna Losert
    Roy Oelen
    Irene V. van Blokland
    Hilde E. Groot
    Morris A. Swertz
    Pim van der Harst
    Harm-Jan Westra
    Monique G.P. van der Wijst
    Matthias Heinig
    Lude Franke
    [J]. Genome Biology, 24
  • [6] HGC: fast hierarchical clustering for large-scale single-cell data
    Zou, Ziheng
    Hua, Kui
    Zhang, Xuegong
    [J]. BIOINFORMATICS, 2021, 37 (21) : 3964 - 3965
  • [7] Large-scale arrays of picolitre chambers for single-cell analysis of large cell populations
    Lee, Won Chul
    Rigante, Sara
    Pisano, Albert P.
    Kuypers, Frans A.
    [J]. LAB ON A CHIP, 2010, 10 (21) : 2952 - 2958
  • [8] Identification of genetic variants that impact gene coexpression relationships using large-scale single-cell data
    Li, Shuang
    Schimid, Katharina
    de Vries, Dylan
    Korshevniuk, Maryna
    Swertz, Morris
    Westra, Harm-Jan
    van der Wijst, Monique
    Heinig, Matthias
    Franke, Lude
    [J]. EUROPEAN JOURNAL OF HUMAN GENETICS, 2023, 31 : 15 - 16
  • [9] Challenges and prospects in the analysis of large-scale gene expression data
    Ihmeis, JH
    Bergmann, S
    [J]. BRIEFINGS IN BIOINFORMATICS, 2004, 5 (04) : 313 - 327
  • [10] SCIGA: Software for large-scale, single-cell immunoglobulin repertoire analysis
    Ye, Haocheng
    Cheng, Lin
    Ju, Bin
    Xu, Gang
    Liu, Yang
    Zhang, Shuye
    Wang, Lifei
    Zhang, Zheng
    [J]. GIGASCIENCE, 2021, 10 (09):