Learning Value Functions in Interactive Evolutionary Multiobjective Optimization

被引:60
|
作者
Branke, Juergen [1 ]
Greco, Salvatore [2 ,3 ]
Slowinski, Roman [4 ,5 ]
Zielniewicz, Piotr [4 ]
机构
[1] Univ Warwick, Warwick Business Sch, Coventry CV4 7AL, W Midlands, England
[2] Univ Catania, Dept Econ & Business, I-95124 Catania, Italy
[3] Univ Portsmouth, Portsmouth Business Sch, Portsmouth PO1 2UP, Hants, England
[4] Poznan Univ Tech, Inst Comp Sci, PL-60965 Poznan, Poland
[5] Polish Acad Sci, Syst Res Inst, PL-01447 Warshaw, Poland
关键词
Evolutionary multiobjective optimization; interactive procedure; ordinal regression; preference learning; GENETIC ALGORITHM; DECISION-MAKING; PREFERENCES; MODEL; SET;
D O I
10.1109/TEVC.2014.2303783
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes an interactive multiobjective evolutionary algorithm (MOEA) that attempts to learn a value function capturing the users' true preferences. At regular intervals, the user is asked to rank a single pair of solutions. This information is used to update the algorithm's internal value function model, and the model is used in subsequent generations to rank solutions incomparable according to dominance. This speeds up evolution toward the region of the Pareto front that is most desirable to the user. We take into account the most general additive value function as a preference model and we empirically compare different ways to identify the value function that seems to be the most representative with respect to the given preference information, different types of user preferences, and different ways to use the learned value function in the MOEA. Results on a number of different scenarios suggest that the proposed algorithm works well over a range of benchmark problems and types of user preferences.
引用
收藏
页码:88 / 102
页数:15
相关论文
共 50 条
  • [1] An Interactive Evolutionary Multiobjective Optimization Method Based on Progressively Approximated Value Functions
    Deb, Kalyanmoy
    Sinha, Ankur
    Korhonen, Pekka J.
    Wallenius, Jyrki
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2010, 14 (05) : 723 - 739
  • [2] Interactive Evolutionary Multiobjective Optimization via Learning to Rank
    Li, Ke
    Lai, Guiyu
    Yao, Xin
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2023, 27 (04) : 749 - 763
  • [3] Interactive Multiobjective Optimization Using a Set of Additive Value Functions
    Figueira, Jose Rui
    Greco, Salvatore
    Mousseau, Vincent
    Slowinski, Roman
    MULTIOBJECTIVE OPTIMIZATION: INTERACTIVE AND EVOLUTIONARY APPROACHES, 2008, 5252 : 97 - +
  • [4] Explainable interactive evolutionary multiobjective optimization
    Corrente, Salvatore
    Greco, Salvatore
    Matarazzo, Benedetto
    Slowinski, Roman
    OMEGA-INTERNATIONAL JOURNAL OF MANAGEMENT SCIENCE, 2024, 122
  • [5] Interactive Decomposition Multiobjective Optimization Via Progressively Learned Value Functions
    Li, Ke
    Chen, Renzhi
    Savic, Dragan
    Yao, Xin
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2019, 27 (05) : 849 - 860
  • [6] An interactive evolutionary metaheuristic for multiobjective combinatorial optimization
    Phelps, S
    Köksalan, M
    MANAGEMENT SCIENCE, 2003, 49 (12) : 1726 - 1738
  • [7] Optimization of scalarizing functions through evolutionary multiobjective optimization
    Ishibuchi, Hisao
    Nojima, Yusuke
    EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, PROCEEDINGS, 2007, 4403 : 51 - +
  • [8] A Performance Indicator for Interactive Evolutionary Multiobjective Optimization Methods
    Pour, Pouya Aghaei
    Bandaru, Sunith
    Afsar, Bekir
    Emmerich, Michael
    Miettinen, Kaisa
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2024, 28 (03) : 778 - 787
  • [9] An Interactive Evolutionary Multiobjective Optimization Method: Interactive WASF-GA
    Ruizi, Ana B.
    Luque, Mariano
    Miettinen, Kaisa
    Saborido, Ruben
    EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, PT II, 2015, 9019 : 249 - 263
  • [10] Interactive Multiobjective Optimization from a Learning Perspective
    Belton, Valerie
    Branke, Juergen
    Eskelinen, Petri
    Greco, Salvatore
    Molina, Julian
    Ruiz, Francisco
    Slowinski, Roman
    MULTIOBJECTIVE OPTIMIZATION: INTERACTIVE AND EVOLUTIONARY APPROACHES, 2008, 5252 : 405 - +