Learning Value Functions in Interactive Evolutionary Multiobjective Optimization

被引:60
|
作者
Branke, Juergen [1 ]
Greco, Salvatore [2 ,3 ]
Slowinski, Roman [4 ,5 ]
Zielniewicz, Piotr [4 ]
机构
[1] Univ Warwick, Warwick Business Sch, Coventry CV4 7AL, W Midlands, England
[2] Univ Catania, Dept Econ & Business, I-95124 Catania, Italy
[3] Univ Portsmouth, Portsmouth Business Sch, Portsmouth PO1 2UP, Hants, England
[4] Poznan Univ Tech, Inst Comp Sci, PL-60965 Poznan, Poland
[5] Polish Acad Sci, Syst Res Inst, PL-01447 Warshaw, Poland
关键词
Evolutionary multiobjective optimization; interactive procedure; ordinal regression; preference learning; GENETIC ALGORITHM; DECISION-MAKING; PREFERENCES; MODEL; SET;
D O I
10.1109/TEVC.2014.2303783
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes an interactive multiobjective evolutionary algorithm (MOEA) that attempts to learn a value function capturing the users' true preferences. At regular intervals, the user is asked to rank a single pair of solutions. This information is used to update the algorithm's internal value function model, and the model is used in subsequent generations to rank solutions incomparable according to dominance. This speeds up evolution toward the region of the Pareto front that is most desirable to the user. We take into account the most general additive value function as a preference model and we empirically compare different ways to identify the value function that seems to be the most representative with respect to the given preference information, different types of user preferences, and different ways to use the learned value function in the MOEA. Results on a number of different scenarios suggest that the proposed algorithm works well over a range of benchmark problems and types of user preferences.
引用
收藏
页码:88 / 102
页数:15
相关论文
共 50 条
  • [21] An Orthogonal Evolutionary Algorithm With Learning Automata for Multiobjective Optimization
    Dai, Cai
    Wang, Yuping
    Ye, Miao
    Xue, Xingsi
    Liu, Hailin
    IEEE TRANSACTIONS ON CYBERNETICS, 2016, 46 (12) : 3306 - 3319
  • [22] Comparing interactive evolutionary multiobjective optimization methods with an artificial decision maker
    Bekir Afsar
    Ana B. Ruiz
    Kaisa Miettinen
    Complex & Intelligent Systems, 2023, 9 : 1165 - 1181
  • [23] An Evolutionary Multiobjective Optimization Algorithm Based on Manifold Learning
    Jiang, Jiaqi
    Gu, Fangqing
    Shang, Chikai
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT VII, 2024, 14431 : 438 - 449
  • [24] Incorporation of scalarizing fitness functions into evolutionary multiobjective optimization algorithms
    Ishibuchi, Hisao
    Doi, Tsutomu
    Nojima, Yusuke
    PARALLEL PROBLEM SOLVING FROM NATURE - PPSN IX, PROCEEDINGS, 2006, 4193 : 493 - 502
  • [25] MODRL/D-EL: Multiobjective Deep Reinforcement Learning with Evolutionary Learning for Multiobjective Optimization
    Zhang, Yongxin
    Wang, Jiahai
    Zhang, Zizhen
    Zhou, Yalan
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [26] Evolutionary Multiobjective Optimization
    Yen, Gary G.
    IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2009, 4 (03) : 2 - 2
  • [27] Evolutionary multiobjective optimization
    Coello Coello, Carlos A.
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2011, 1 (05) : 444 - 447
  • [28] An interactive algorithm for multiobjective ranking for underlying linear and quasiconcave value functions
    Ozturk, Diclehan Tezcaner
    Koksalan, Murat
    INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH, 2021, 28 (06) : 3513 - 3535
  • [29] On Benchmarking Interactive Evolutionary Multiobjective Algorithms
    Shavarani, Seyed Mahdi
    Lopez-Ibanez, Manuel
    Knowles, Joshua
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2024, 28 (04) : 1084 - 1098
  • [30] Experiments with classification-based scalarizing functions in interactive multiobjective optimization
    Miettinen, Kaisa
    Makela, Marko M.
    Kaario, Katja
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2006, 175 (02) : 931 - 947