Learning Value Functions in Interactive Evolutionary Multiobjective Optimization

被引:60
|
作者
Branke, Juergen [1 ]
Greco, Salvatore [2 ,3 ]
Slowinski, Roman [4 ,5 ]
Zielniewicz, Piotr [4 ]
机构
[1] Univ Warwick, Warwick Business Sch, Coventry CV4 7AL, W Midlands, England
[2] Univ Catania, Dept Econ & Business, I-95124 Catania, Italy
[3] Univ Portsmouth, Portsmouth Business Sch, Portsmouth PO1 2UP, Hants, England
[4] Poznan Univ Tech, Inst Comp Sci, PL-60965 Poznan, Poland
[5] Polish Acad Sci, Syst Res Inst, PL-01447 Warshaw, Poland
关键词
Evolutionary multiobjective optimization; interactive procedure; ordinal regression; preference learning; GENETIC ALGORITHM; DECISION-MAKING; PREFERENCES; MODEL; SET;
D O I
10.1109/TEVC.2014.2303783
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes an interactive multiobjective evolutionary algorithm (MOEA) that attempts to learn a value function capturing the users' true preferences. At regular intervals, the user is asked to rank a single pair of solutions. This information is used to update the algorithm's internal value function model, and the model is used in subsequent generations to rank solutions incomparable according to dominance. This speeds up evolution toward the region of the Pareto front that is most desirable to the user. We take into account the most general additive value function as a preference model and we empirically compare different ways to identify the value function that seems to be the most representative with respect to the given preference information, different types of user preferences, and different ways to use the learned value function in the MOEA. Results on a number of different scenarios suggest that the proposed algorithm works well over a range of benchmark problems and types of user preferences.
引用
收藏
页码:88 / 102
页数:15
相关论文
共 50 条
  • [41] INTERACTIVE ALGORITHM FOR MULTIOBJECTIVE OPTIMIZATION
    ROSINGER, EE
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1981, 35 (03) : 339 - 365
  • [42] Interactive multiobjective optimization procedure
    Tappeta, RV
    Renaud, JE
    AIAA JOURNAL, 1999, 37 (07) : 881 - 889
  • [43] Multiobjective Evolutionary Data Mining for Performance Improvement of Evolutionary Multiobjective Optimization
    Nojima, Yusuke
    Tanigaki, Yuki
    Masuyama, Naoki
    Ishibuchi, Hisao
    2018 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2018, : 745 - 750
  • [44] Evolutionary multiobjective optimization on a chip
    Bonissone, Stefano
    Subbu, Raj
    2007 IEEE WORKSHOP ON EVOLVABLE AND ADAPTIVE HARDWARE, 2007, : 61 - +
  • [45] Evolutionary Multiobjective Optimization and Uncertainty
    Branke, Juergen
    EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, EMO 2013, 2013, 7811 : 2 - 2
  • [46] Tutorial on Evolutionary Multiobjective Optimization
    Brockhoff, Dimo
    PROCEEDINGS OF THE 2019 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION (GECCCO'19 COMPANION), 2019, : 461 - 484
  • [47] Introduction to Evolutionary Multiobjective Optimization
    Deb, Kalyanmoy
    MULTIOBJECTIVE OPTIMIZATION: INTERACTIVE AND EVOLUTIONARY APPROACHES, 2008, 5252 : 59 - 96
  • [48] Evolutionary Multiobjective Optimization of Winglets
    Teixeira, Mateus A. M.
    Goulart, Fillipe
    Campelo, Felipe
    GECCO'16: PROCEEDINGS OF THE 2016 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2016, : 1021 - 1028
  • [49] Interactive Genetic Fuzzy Rule Selection through Evolutionary Multiobjective Optimization with User Preference
    Nojima, Yusuke
    Ishibuchi, Hisao
    MCDM: 2009 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN MULTI-CRITERIA DECISION-MAKING, 2009, : 141 - 148
  • [50] Evolutionary Optimization of Deep Learning Activation Functions
    Bingham, Garrett
    Macke, William
    Miikkulainen, Risto
    GECCO'20: PROCEEDINGS OF THE 2020 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2020, : 289 - 296