Learning Value Functions in Interactive Evolutionary Multiobjective Optimization

被引:60
|
作者
Branke, Juergen [1 ]
Greco, Salvatore [2 ,3 ]
Slowinski, Roman [4 ,5 ]
Zielniewicz, Piotr [4 ]
机构
[1] Univ Warwick, Warwick Business Sch, Coventry CV4 7AL, W Midlands, England
[2] Univ Catania, Dept Econ & Business, I-95124 Catania, Italy
[3] Univ Portsmouth, Portsmouth Business Sch, Portsmouth PO1 2UP, Hants, England
[4] Poznan Univ Tech, Inst Comp Sci, PL-60965 Poznan, Poland
[5] Polish Acad Sci, Syst Res Inst, PL-01447 Warshaw, Poland
关键词
Evolutionary multiobjective optimization; interactive procedure; ordinal regression; preference learning; GENETIC ALGORITHM; DECISION-MAKING; PREFERENCES; MODEL; SET;
D O I
10.1109/TEVC.2014.2303783
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes an interactive multiobjective evolutionary algorithm (MOEA) that attempts to learn a value function capturing the users' true preferences. At regular intervals, the user is asked to rank a single pair of solutions. This information is used to update the algorithm's internal value function model, and the model is used in subsequent generations to rank solutions incomparable according to dominance. This speeds up evolution toward the region of the Pareto front that is most desirable to the user. We take into account the most general additive value function as a preference model and we empirically compare different ways to identify the value function that seems to be the most representative with respect to the given preference information, different types of user preferences, and different ways to use the learned value function in the MOEA. Results on a number of different scenarios suggest that the proposed algorithm works well over a range of benchmark problems and types of user preferences.
引用
收藏
页码:88 / 102
页数:15
相关论文
共 50 条
  • [31] Dominance-Based Rough Set Approach to Interactive Evolutionary Multiobjective Optimization
    Greco, Salvatore
    Matarazzo, Benedetto
    Slowinski, Roman
    PREFERENCES AND DECISIONS: MODELS AND APPLICATIONS, 2010, 257 : 225 - +
  • [32] Desirable Properties of Performance Indicators for Assessing Interactive Evolutionary Multiobjective Optimization Methods
    Pour, Pouya Aghaei
    Bandaru, Sunith
    Afsar, Bekir
    Miettinen, Kaisa
    PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2022, 2022, : 1803 - 1811
  • [33] Multiobjective combinatorial optimization with interactive evolutionary algorithms: The case of facility location problems
    Barbati, Maria
    Corrente, Salvatore
    Greco, Salvatore
    EURO JOURNAL ON DECISION PROCESSES, 2024, 12
  • [34] A general framework for evolutionary multiobjective optimization via manifold learning
    Li, Ke
    Kwong, Sam
    NEUROCOMPUTING, 2014, 146 : 65 - 74
  • [35] Learning Task Relationships in Evolutionary Multitasking for Multiobjective Continuous Optimization
    Chen, Zefeng
    Zhou, Yuren
    He, Xiaoyu
    Zhang, Jun
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (06) : 5278 - 5289
  • [36] Evolutionary Multiobjective Optimization in Dynamic Environments: A Set of Novel Benchmark Functions
    Biswas, Subhodip
    Das, Swagatam
    Suganthan, Ponnuthurai N.
    Coello Coello, Carlos A.
    2014 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2014, : 3192 - 3199
  • [37] Difficulty in Evolutionary Multiobjective Optimization of Discrete Objective Functions with Different Granularities
    Ishibuchi, Hisao
    Yamane, Masakazu
    Nojima, Yusuke
    EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, EMO 2013, 2013, 7811 : 230 - 245
  • [38] Effects of Noisy Multiobjective Test Functions Applied to Evolutionary Optimization Algorithms
    Ryter, Remo
    Hanne, Thomas
    Dornberger, Rolf
    JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, 2020, 11 (03) : 128 - 134
  • [39] Interactive multiobjective optimization procedure
    Tappeta, Ravindra V.
    Renaud, John E.
    Collection of Technical Papers - AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 1999, 1 : 27 - 41
  • [40] Progressively Interactive Evolutionary Multi-Objective Optimization Method Using Generalized Polynomial Value Functions
    Sinha, Ankur
    Deb, Kalyanmoy
    Korhonen, Pekka
    Wallenius, Jyrki
    2010 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2010,