Interactive Evolutionary Multiobjective Optimization via Learning to Rank

被引:2
|
作者
Li, Ke [1 ,2 ]
Lai, Guiyu [1 ]
Yao, Xin [3 ]
机构
[1] Univ Elect Sci & Technol China, Coll Comp Sci & Engn, Chengdu 611731, Peoples R China
[2] Univ Exeter, Dept Comp Sci, NorthPark Rd, Exeter EX4 4QF, England
[3] Southern Univ Sci & Technol, Dept Comp Sci & Engn, Guangdong Prov Key Lab Brain Inspired Intelligent, Shenzhen 518055, Peoples R China
基金
英国工程与自然科学研究理事会;
关键词
Evolutionary multiobjective optimization (EMO); gradient descent; learning to rank (LTR); preference modeling; GENETIC ALGORITHM; PREFERENCES; SEARCH;
D O I
10.1109/TEVC.2023.3234269
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In practical multicriterion decision making, it is cumbersome if a decision maker (DM) is asked to choose among a set of tradeoff alternatives covering the whole Pareto-optimal front. This is a paradox in conventional evolutionary multiobjective optimization (EMO) that always aim to achieve a well balance between convergence and diversity. In essence, the ultimate goal of multiobjective optimization is to help a DM identify solution(s) of interest (SOI) achieving satisfactory tradeoffs among multiple conflicting criteria. Bearing this in mind, this article develops a framework for designing preference-based EMO algorithms to find SOI in an interactive manner. Its core idea is to involve human in the loop of EMO. After every several iterations, the DM is invited to elicit her feedback with regard to a couple of incumbent candidates. By collecting such information, her preference is progressively learned by a learning-to-rank neural network and then applied to guide the baseline EMO algorithm. Note that this framework is so general that any existing EMO algorithm can be applied in a plug-in manner. Experiments on 48 benchmark test problems with up to ten objectives and a real-world multiobjective robot control problem fully demonstrate the effectiveness of our proposed algorithms for finding SOI.
引用
收藏
页码:749 / 763
页数:15
相关论文
共 50 条
  • [1] Learning Value Functions in Interactive Evolutionary Multiobjective Optimization
    Branke, Juergen
    Greco, Salvatore
    Slowinski, Roman
    Zielniewicz, Piotr
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2015, 19 (01) : 88 - 102
  • [2] Explainable interactive evolutionary multiobjective optimization
    Corrente, Salvatore
    Greco, Salvatore
    Matarazzo, Benedetto
    Slowinski, Roman
    [J]. OMEGA-INTERNATIONAL JOURNAL OF MANAGEMENT SCIENCE, 2024, 122
  • [3] A general framework for evolutionary multiobjective optimization via manifold learning
    Li, Ke
    Kwong, Sam
    [J]. NEUROCOMPUTING, 2014, 146 : 65 - 74
  • [4] An interactive evolutionary metaheuristic for multiobjective combinatorial optimization
    Phelps, S
    Köksalan, M
    [J]. MANAGEMENT SCIENCE, 2003, 49 (12) : 1726 - 1738
  • [5] A Performance Indicator for Interactive Evolutionary Multiobjective Optimization Methods
    Pour, Pouya Aghaei
    Bandaru, Sunith
    Afsar, Bekir
    Emmerich, Michael
    Miettinen, Kaisa
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2024, 28 (03) : 778 - 787
  • [6] An Interactive Evolutionary Multiobjective Optimization Method: Interactive WASF-GA
    Ruizi, Ana B.
    Luque, Mariano
    Miettinen, Kaisa
    Saborido, Ruben
    [J]. EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, PT II, 2015, 9019 : 249 - 263
  • [7] Interactive Multiobjective Optimization from a Learning Perspective
    Belton, Valerie
    Branke, Juergen
    Eskelinen, Petri
    Greco, Salvatore
    Molina, Julian
    Ruiz, Francisco
    Slowinski, Roman
    [J]. MULTIOBJECTIVE OPTIMIZATION: INTERACTIVE AND EVOLUTIONARY APPROACHES, 2008, 5252 : 405 - +
  • [8] Evolutionary Dynamic Multiobjective Optimization via Learning From Historical Search Process
    Zhao, Qi
    Yan, Bai
    Shi, Yuhui
    Middendorf, Martin
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (07) : 6119 - 6130
  • [9] Robust Multiobjective Optimization via Evolutionary Algorithms
    He, Zhenan
    Yen, Gary G.
    Yi, Zhang
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2019, 23 (02) : 316 - 330
  • [10] MOFSRank: A Multiobjective Evolutionary Algorithm for Feature Selection in Learning to Rank
    Cheng, Fan
    Guo, Wei
    Zhang, Xingyi
    [J]. COMPLEXITY, 2018,