The General Solution of the Eisenhart Equation and Projective Motions of Pseudo-Riemannian Manifolds

被引:1
|
作者
Aminova, A. V. [1 ]
Sabitova, M. N. [2 ]
机构
[1] Kazan Volga Reg Fed Univ, Kazan 420008, Russia
[2] CUNY Queens Coll, Queens, NY 11367 USA
基金
美国国家科学基金会;
关键词
Eisenhart equation; h-space; projective motion; curvature;
D O I
10.1134/S0001434620050181
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The solution of the Eisenhart equation for pseudo-Riemannian manifolds (M-n,g) of arbitrary signature and any dimension is obtained. Thereby, pseudo-Riemannianh-spaces (i.e., spaces admitting nontrivial solutionsh not equal cgof the Eisenhart equation) of all possible types determined by the Segre characteristic chi of the bilinear formhare found. Necessary and sufficient conditions for the existence of an infinitesimal projective transformation in (M-n,g) are given. The curvature 2-form of a (rigid)h-space of type chi= {r(1), horizontal ellipsis ,r(k)} is calculated and necessary and sufficient conditions for this space to have constant curvature are obtained.
引用
收藏
页码:875 / 886
页数:12
相关论文
共 50 条
  • [31] Indefinite Kasparov Modules and Pseudo-Riemannian Manifolds
    Koen van den Dungen
    Adam Rennie
    Annales Henri Poincaré, 2016, 17 : 3255 - 3286
  • [32] Note on the holonomy groups of pseudo-Riemannian manifolds
    A. S. Galaev
    Mathematical Notes, 2013, 93 : 810 - 815
  • [33] Cones over pseudo-Riemannian manifolds and their holonomy
    Alekseevsky, D. V.
    Cortes, V.
    Galaev, A. S.
    Leistner, T.
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2009, 635 : 23 - 69
  • [34] FLAT PSEUDO-RIEMANNIAN STRUCTURES OF COMPACT MANIFOLDS
    FURNESS, P
    FEDIDA, E
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1978, 286 (03): : 169 - 171
  • [35] Pseudo-Riemannian manifolds with recurrent spinor fields
    Galaev, A. S.
    SIBERIAN MATHEMATICAL JOURNAL, 2013, 54 (04) : 604 - 613
  • [36] Pseudo-Riemannian manifolds with simple Jacobi operators
    Bonome, A
    Castro, R
    García-Río, E
    Hervella, L
    Vázquez-Lorenzo, R
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2002, 54 (04) : 847 - 875
  • [37] ON THE BIHARMONICITY OF VECTOR FIELDS ON PSEUDO-RIEMANNIAN MANIFOLDS
    Alem, Amina
    Kacimi, Bouazza
    Ozkan, Mustafa
    HONAM MATHEMATICAL JOURNAL, 2023, 45 (02): : 300 - 315
  • [38] SOLITON EXCITATIONS IN TERMS OF PSEUDO-RIEMANNIAN MANIFOLDS
    WIATROWSKI, G
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1985, 129 (02): : 607 - 614
  • [39] PSEUDO-RIEMANNIAN MANIFOLDS WITH TOTALLY GEODESIC BISECTORS
    BEEM, JK
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 49 (01) : 212 - 215
  • [40] A New Approach on Helices in Pseudo-Riemannian Manifolds
    Ziplar, Evren
    Yayli, Yusuf
    Gok, Ismail
    ABSTRACT AND APPLIED ANALYSIS, 2014,