The General Solution of the Eisenhart Equation and Projective Motions of Pseudo-Riemannian Manifolds

被引:1
|
作者
Aminova, A. V. [1 ]
Sabitova, M. N. [2 ]
机构
[1] Kazan Volga Reg Fed Univ, Kazan 420008, Russia
[2] CUNY Queens Coll, Queens, NY 11367 USA
基金
美国国家科学基金会;
关键词
Eisenhart equation; h-space; projective motion; curvature;
D O I
10.1134/S0001434620050181
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The solution of the Eisenhart equation for pseudo-Riemannian manifolds (M-n,g) of arbitrary signature and any dimension is obtained. Thereby, pseudo-Riemannianh-spaces (i.e., spaces admitting nontrivial solutionsh not equal cgof the Eisenhart equation) of all possible types determined by the Segre characteristic chi of the bilinear formhare found. Necessary and sufficient conditions for the existence of an infinitesimal projective transformation in (M-n,g) are given. The curvature 2-form of a (rigid)h-space of type chi= {r(1), horizontal ellipsis ,r(k)} is calculated and necessary and sufficient conditions for this space to have constant curvature are obtained.
引用
收藏
页码:875 / 886
页数:12
相关论文
共 50 条
  • [41] Parallel pure spinors on pseudo-Riemannian manifolds
    Kath, I
    GEOMETRY AND TOPOLOGY OF SUBMANIFOLDS X: DIFFERENTIAL GEOMETRY IN HONOR OF PROF S.S. CHERN, 2000, : 87 - 103
  • [42] A Comprehensive Survey on Parallel Submanifolds in Riemannian and Pseudo-Riemannian Manifolds
    Chen, Bang-Yen
    AXIOMS, 2019, 8 (04)
  • [43] Directed Graph Embeddings in Pseudo-Riemannian Manifolds
    Sim, Aaron
    Wiatrak, Maciej
    Brayne, Angus
    Creed, Paidi
    Paliwal, Saee
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [44] SOME HARMONIC MAPS ON PSEUDO-RIEMANNIAN MANIFOLDS
    WHITMAN, AP
    KNILL, RJ
    STOEGER, WR
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1986, 25 (10) : 1139 - 1153
  • [45] Z-TOPOLOGY ON PSEUDO-RIEMANNIAN MANIFOLDS
    QUAN, PM
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1975, 280 (14): : 945 - 947
  • [46] Biharmonic vector fields on pseudo-Riemannian manifolds
    Markellos, M.
    Urakawa, H.
    JOURNAL OF GEOMETRY AND PHYSICS, 2018, 130 : 293 - 314
  • [47] Pseudo-Riemannian manifolds with recurrent spinor fields
    A. S. Galaev
    Siberian Mathematical Journal, 2013, 54 : 604 - 613
  • [48] Pseudo-Riemannian manifolds modelled on symmetric spaces
    Dusek, Zdenek
    Kowalski, Oldrich
    MONATSHEFTE FUR MATHEMATIK, 2012, 165 (3-4): : 319 - 326
  • [49] Indefinite Kasparov Modules and Pseudo-Riemannian Manifolds
    van den Dungen, Koen
    Rennie, Adam
    ANNALES HENRI POINCARE, 2016, 17 (11): : 3255 - 3286
  • [50] Parallel spinors on pseudo-Riemannian spinc manifolds
    Ikemakhen, Aziz
    JOURNAL OF GEOMETRY AND PHYSICS, 2006, 56 (09) : 1473 - 1483