The General Solution of the Eisenhart Equation and Projective Motions of Pseudo-Riemannian Manifolds

被引:1
|
作者
Aminova, A. V. [1 ]
Sabitova, M. N. [2 ]
机构
[1] Kazan Volga Reg Fed Univ, Kazan 420008, Russia
[2] CUNY Queens Coll, Queens, NY 11367 USA
基金
美国国家科学基金会;
关键词
Eisenhart equation; h-space; projective motion; curvature;
D O I
10.1134/S0001434620050181
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The solution of the Eisenhart equation for pseudo-Riemannian manifolds (M-n,g) of arbitrary signature and any dimension is obtained. Thereby, pseudo-Riemannianh-spaces (i.e., spaces admitting nontrivial solutionsh not equal cgof the Eisenhart equation) of all possible types determined by the Segre characteristic chi of the bilinear formhare found. Necessary and sufficient conditions for the existence of an infinitesimal projective transformation in (M-n,g) are given. The curvature 2-form of a (rigid)h-space of type chi= {r(1), horizontal ellipsis ,r(k)} is calculated and necessary and sufficient conditions for this space to have constant curvature are obtained.
引用
收藏
页码:875 / 886
页数:12
相关论文
共 50 条
  • [21] Reductive homogeneous pseudo-Riemannian manifolds
    Gadea, PM
    Oubina, JA
    MONATSHEFTE FUR MATHEMATIK, 1997, 124 (01): : 17 - 34
  • [22] Biharmonic submanifolds of pseudo-Riemannian manifolds
    Dong, Yuxin
    Ou, Ye-Lin
    JOURNAL OF GEOMETRY AND PHYSICS, 2017, 112 : 252 - 262
  • [23] Curvature measures of pseudo-Riemannian manifolds
    Bernig, Andreas
    Faifman, Dmitry
    Solanes, Gil
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2022, 2022 (788): : 77 - 127
  • [24] ON MAXIMAL SUBMANIFOLDS IN PSEUDO-RIEMANNIAN MANIFOLDS
    SHEN, YB
    CHINESE SCIENCE BULLETIN, 1990, 35 (22): : 1932 - 1933
  • [25] Structure of the Projective Group in A Pseudo-Riemannian Space
    Z. Kh. Zakirova
    Theoretical and Mathematical Physics, 2018, 196 : 965 - 975
  • [26] Structure of the Projective Group in A Pseudo-Riemannian Space
    Zakirova, Z. Kh.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2018, 196 (01) : 965 - 975
  • [27] Pseudo-Riemannian Jacobi-Videv manifolds
    Gilkey, P.
    Nikcevic, S.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2007, 4 (05) : 727 - 738
  • [28] INVARIANT COEFFICIENT OPERATORS ON PSEUDO-RIEMANNIAN MANIFOLDS
    BABBITT, D
    JOURNAL OF MATHEMATICS AND MECHANICS, 1966, 15 (04): : 643 - &
  • [29] PSEUDO-RIEMANNIAN MANIFOLDS WITH TOTALLY GEODESIC BISECTORS
    BEEM, JK
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (01): : A205 - A205
  • [30] Pseudo-Riemannian Manifolds with Commuting Jacobi Operators
    Brozos-Vázquez M.
    Gilkey P.
    Rendiconti del Circolo Matematico di Palermo, 2006, 55 (2) : 163 - 174