Note on the holonomy groups of pseudo-Riemannian manifolds

被引:0
|
作者
A. S. Galaev
机构
[1] Masaryk University,
来源
Mathematical Notes | 2013年 / 93卷
关键词
holonomy algebra; pseudo-Riemannian manifolds; linear connection; Levi-Cività connection; curvature tensor; Lorentzian manifold;
D O I
暂无
中图分类号
学科分类号
摘要
For an arbitrary subalgebra h ⊂ so(r, s) a polynomial pseudo-Riemannian metric of signature (r + 2, s + 2) is constructed, the holonomy algebra of this metric contains h as a subalgebra. This result shows the essential distinction between the holonomy algebras of pseudo-Riemannian manifolds of index greater than or equal to 2 and the holonomy algebras of Riemannian and Lorentzian manifolds.
引用
收藏
页码:810 / 815
页数:5
相关论文
共 50 条
  • [1] Note on the holonomy groups of pseudo-Riemannian manifolds
    Galaev, A. S.
    MATHEMATICAL NOTES, 2013, 93 (5-6) : 810 - 815
  • [2] Holonomy groups of pseudo-Riemannian manifolds
    Ikemakhen, A
    Differential Geometry and Topology, Discrete and Computational Geometry, 2005, 197 : 181 - 196
  • [3] Parallel spinors and holonomy groups on pseudo-Riemannian spin manifolds
    Baum, H
    Kath, I
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 1999, 17 (01) : 1 - 17
  • [4] Parallel Spinors and Holonomy Groups on Pseudo-Riemannian Spin Manifolds
    Helga Baum
    Ines Kath
    Annals of Global Analysis and Geometry, 1999, 17 : 1 - 17
  • [5] Cones over pseudo-Riemannian manifolds and their holonomy
    Alekseevsky, D. V.
    Cortes, V.
    Galaev, A. S.
    Leistner, T.
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2009, 635 : 23 - 69
  • [6] Holonomy algebras of Einstein pseudo-Riemannian manifolds
    Galaev, Anton S.
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2018, 98 : 393 - 415
  • [7] Holonomy groups and parallel spinors on totally reducible pseudo-Riemannian manifolds.
    Ikemakhen, A
    COMPTES RENDUS MATHEMATIQUE, 2004, 339 (03) : 203 - 208
  • [8] ON A NEW CLASS OF HOLONOMY GROUPS IN PSEUDO-RIEMANNIAN GEOMETRY
    Bolsinov, Alexey
    Tsonev, Dragomir
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2014, 97 (03) : 377 - 394
  • [9] Holonomy groups of complete flat pseudo-Riemannian homogeneous spaces
    Globke, Wolfgang
    ADVANCES IN MATHEMATICS, 2013, 240 : 88 - 105
  • [10] Pseudo-Riemannian manifolds
    Girbau J.
    Bruna L.
    Progress in Mathematical Physics, 2010, 58 : 1 - 17