Photostable and Proteolysis-Resistant Forster Resonance Energy Transfer-Based Calcium Biosensor

被引:5
|
作者
Nguyen, Dat [6 ]
Behrens, Danielle M. [6 ]
Sen, Sanjana [7 ]
Najdahmadi, Avid [4 ,8 ]
Pham, Jessica N. [9 ]
Speciale, Gaetano [9 ]
Lawrence, Micah M. [6 ]
Majumdar, Sudipta [9 ]
Weiss, Gregory A. [1 ,2 ]
Botvinick, Elliot L. [3 ,4 ,5 ]
机构
[1] Univ Calif Irvine, Dept Mol Biol & Biochem, Dept Chem, Irvine, CA 92697 USA
[2] Univ Calif Irvine, Dept Pharmaceut Sci, Irvine, CA 92697 USA
[3] Univ Calif Irvine, Beckman Laser Inst, Dept Biomed Engn, Irvine, CA 92697 USA
[4] Univ Calif Irvine, Med Clin, Irvine, CA 92697 USA
[5] Univ Calif Irvine, Dept Surg, Irvine, CA 92697 USA
[6] Univ Calif Irvine, Dept Biomed Engn, Irvine, CA 92697 USA
[7] Univ Calif Irvine, Dept Mol Biol & Biochem, Irvine, CA 92697 USA
[8] Univ Calif Irvine, Beckman Laser Inst, Irvine, CA 92697 USA
[9] Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA
基金
美国国家科学基金会;
关键词
FRET; PROTEIN; SENSORS; TAG;
D O I
10.1021/acs.analchem.0c00573
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Molecular sensors from protein engineering offer new methods to sensitively bind to and detect target analytes for a wide range of applications. For example, these sensors can be integrated into probes for implantation, and then yield new and valuable physiological information. Here, a new Forster resonance energy transfer (FRET)based sensor is integrated with an optical fiber to yield a device measuring free Ca2+. This membrane encapsulated optical fiber (MEOF) device is composed of a sensor matrix that fills poly(tetrafluoroethylene) (PTFE) with an engineered troponin C (TnC) protein fused to a pair of FRET fluorophores. The FRET efficiency is modulated upon Ca2+ ion binding. The probe further comprises a second, size-excluding filter membrane that is synthesized by filling the pores of a PTFE matrix with a poly(ethylene glycol) dimethacrylate (PEGDMA) hydrogel; this design ensures protection from circulating proteases and the foreign body response. The two membranes are stacked and placed on a thin, silica optical fiber for optical excitation and detection. Results show the biosensor responds to changes in Ca2+ concentration within minutes with a sensitivity ranging from 0.01 to 10 mM Ca2+, allowing discrimination of hyper- and hypocalcemia. Furthermore, the system reversibly binds Ca2+ to allow continuous monitoring. This work paves the way for the use of engineered structure-switching proteins for continuous optical monitoring in a large number of applications.
引用
收藏
页码:7683 / 7689
页数:7
相关论文
共 50 条
  • [41] Multichromophoric Forster resonance energy transfer
    Jang, SJ
    Newton, MD
    Silbey, RJ
    PHYSICAL REVIEW LETTERS, 2004, 92 (21) : 218301 - 1
  • [42] Fluorescence resonance energy transfer-based stoichiometry in living cells
    Hoppe, A
    Christensen, K
    Swanson, JA
    BIOPHYSICAL JOURNAL, 2002, 83 (06) : 3652 - 3664
  • [43] NANOSCALE RESONANCE ENERGY TRANSFER-BASED DEVICES FOR PROBABILISTIC COMPUTING
    Wang, Siyang
    Lebeck, Alvin R.
    Dwyer, Chris
    IEEE MICRO, 2015, 35 (05) : 72 - 84
  • [44] SENSOR BASED ON FORSTER RESONANCE ENERGY TRANSFER WITH QUANTUM DOT
    Liskova, Marcela
    Datinska, Vladimira
    Kleparnik, Karel
    Foret, Frantisek
    CECE 2012: 9TH INTERNATIONAL INTERDISCIPLINARY MEETING ON BIOANALYSIS, 2012, : 303 - 306
  • [45] From Forster resonance energy transfer to coherent resonance energy transfer and back
    Clegg, Robert M.
    Sener, Melih
    Govindjee
    OPTICAL BIOPSY VII, 2010, 7561
  • [46] Biosensor Forster resonance energy transfer detection by the phasor approach to fluorescence lifetime imaging microscopy
    Hinde, Elizabeth
    Digman, Michelle A.
    Welch, Christopher
    Hahn, Klaus M.
    Gratton, Enrico
    MICROSCOPY RESEARCH AND TECHNIQUE, 2012, 75 (03) : 271 - 281
  • [47] A genetically encoded Forster resonance energy transfer biosensor for two-photon excitation microscopy
    Kumagai, Yuka
    Kamioka, Yuji
    Yagi, Shunsuke
    Matsuda, Michiyuki
    Kiyokawa, Etsuko
    ANALYTICAL BIOCHEMISTRY, 2011, 413 (02) : 192 - 199
  • [48] Forster resonance energy transfer to impart signal-on and -off capabilities in a single microRNA biosensor
    Larkey, Nicholas E.
    Zhang, Lulu
    Lansing, Shan S.
    Tran, Victoria
    Seewaldt, Victoria L.
    Burrows, Sean M.
    ANALYST, 2016, 141 (22) : 6239 - 6250
  • [49] In vivo monitoring of plant small GTPase activation using a Forster resonance energy transfer biosensor
    Wong, Hann Ling
    Akamatsu, Akira
    Wang, Qiong
    Higuchi, Masayuki
    Matsuda, Tomonori
    Okuda, Jun
    Kosami, Ken-ichi
    Inada, Noriko
    Kawasaki, Tsutomu
    Kaneko-Kawano, Takako
    Nagawa, Shingo
    Tan, Li
    Kawano, Yoji
    Shimamoto, Ko
    PLANT METHODS, 2018, 14
  • [50] Ratiometric Fluorescent Biosensor Based on Forster Resonance Energy Transfer between Carbon Dots and Acridine Orange for miRNA Analysis
    Sun, Zhiwei
    Tong, Yao
    Zhou, Xiaoyu
    Li, Juan
    Zhao, Li
    Li, Hui
    Wang, Chuanxin
    Du, Lutao
    Jiang, Yanyan
    ACS OMEGA, 2021, 6 (49): : 34150 - 34159