Photostable and Proteolysis-Resistant Forster Resonance Energy Transfer-Based Calcium Biosensor

被引:5
|
作者
Nguyen, Dat [6 ]
Behrens, Danielle M. [6 ]
Sen, Sanjana [7 ]
Najdahmadi, Avid [4 ,8 ]
Pham, Jessica N. [9 ]
Speciale, Gaetano [9 ]
Lawrence, Micah M. [6 ]
Majumdar, Sudipta [9 ]
Weiss, Gregory A. [1 ,2 ]
Botvinick, Elliot L. [3 ,4 ,5 ]
机构
[1] Univ Calif Irvine, Dept Mol Biol & Biochem, Dept Chem, Irvine, CA 92697 USA
[2] Univ Calif Irvine, Dept Pharmaceut Sci, Irvine, CA 92697 USA
[3] Univ Calif Irvine, Beckman Laser Inst, Dept Biomed Engn, Irvine, CA 92697 USA
[4] Univ Calif Irvine, Med Clin, Irvine, CA 92697 USA
[5] Univ Calif Irvine, Dept Surg, Irvine, CA 92697 USA
[6] Univ Calif Irvine, Dept Biomed Engn, Irvine, CA 92697 USA
[7] Univ Calif Irvine, Dept Mol Biol & Biochem, Irvine, CA 92697 USA
[8] Univ Calif Irvine, Beckman Laser Inst, Irvine, CA 92697 USA
[9] Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA
基金
美国国家科学基金会;
关键词
FRET; PROTEIN; SENSORS; TAG;
D O I
10.1021/acs.analchem.0c00573
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Molecular sensors from protein engineering offer new methods to sensitively bind to and detect target analytes for a wide range of applications. For example, these sensors can be integrated into probes for implantation, and then yield new and valuable physiological information. Here, a new Forster resonance energy transfer (FRET)based sensor is integrated with an optical fiber to yield a device measuring free Ca2+. This membrane encapsulated optical fiber (MEOF) device is composed of a sensor matrix that fills poly(tetrafluoroethylene) (PTFE) with an engineered troponin C (TnC) protein fused to a pair of FRET fluorophores. The FRET efficiency is modulated upon Ca2+ ion binding. The probe further comprises a second, size-excluding filter membrane that is synthesized by filling the pores of a PTFE matrix with a poly(ethylene glycol) dimethacrylate (PEGDMA) hydrogel; this design ensures protection from circulating proteases and the foreign body response. The two membranes are stacked and placed on a thin, silica optical fiber for optical excitation and detection. Results show the biosensor responds to changes in Ca2+ concentration within minutes with a sensitivity ranging from 0.01 to 10 mM Ca2+, allowing discrimination of hyper- and hypocalcemia. Furthermore, the system reversibly binds Ca2+ to allow continuous monitoring. This work paves the way for the use of engineered structure-switching proteins for continuous optical monitoring in a large number of applications.
引用
收藏
页码:7683 / 7689
页数:7
相关论文
共 50 条
  • [31] Forster Resonance Energy Transfer-Based Dual-Modal Theranostic Nanoprobe for In Situ Visualization of Cancer Photothermal Therapy
    Hu, Dehong
    Sheng, Zonghai
    Zhu, Mingting
    Wang, Xiaobing
    Yan, Fei
    Liu, Chengbo
    Song, Liang
    Qian, Ming
    Liu, Xin
    Zheng, Hairong
    THERANOSTICS, 2018, 8 (02): : 410 - 422
  • [32] Forster Resonance Energy Transfer-Based Self-Assembled Nanoprobe for Rapid and Sensitive Detection of Postoperative Pancreatic Fistula
    Hamano, Nobuhito
    Murata, Masaharu
    Kawano, Takahito
    Piao, Jing Shu
    Narahara, Sayoko
    Nakata, Ryosuke
    Akahoshi, Tomohiko
    Ikeda, Tetsuo
    Hashizume, Makoto
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (08) : 5114 - 5123
  • [33] Quantitative monitoring of 2-oxoglutarate in Escherichia coli cells by a fluorescence resonance energy transfer-based biosensor
    Chang Zhang
    Zi-Han Wei
    Bang-Ce Ye
    Applied Microbiology and Biotechnology, 2013, 97 : 8307 - 8316
  • [34] Quantitative monitoring of 2-oxoglutarate in Escherichia coli cells by a fluorescence resonance energy transfer-based biosensor
    Zhang, Chang
    Wei, Zi-Han
    Ye, Bang-Ce
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2013, 97 (18) : 8307 - 8316
  • [35] Chemiluminescence Resonance Energy Transfer-Based Detection for Microchip Electrophoresis
    Zhao, Shulin
    Huang, Yong
    Shi, Ming
    Liu, Rongjun
    Liu, Yi-Ming
    ANALYTICAL CHEMISTRY, 2010, 82 (05) : 2036 - 2041
  • [36] Fluorescent Conjugated Polymer Containing Rhodamine Derivative for Forster Resonance Energy Transfer-Based Detection of Al3+ Ion
    Namgung, Ho
    Kim, Choongho
    Kim, Yujun
    Kim, Jongho
    Lee, Taek Seung
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2016, 16 (08) : 8805 - 8808
  • [37] Resonance energy transfer-based electrochemiluminescence aptasensor for serotonin detection
    Guo, Yuehua
    Xu, Yinjin
    Wu, Meisheng
    Feng, Qiumei
    TALANTA, 2025, 281
  • [38] A fluorescence resonance energy transfer-based method for histone methyltransferases
    Devkota, Kanchan
    Lohse, Brian
    Jakobsen, Camilla Nyby
    Berthelsen, Jens
    Clausen, Rasmus Praetorius
    ANALYTICAL BIOCHEMISTRY, 2015, 476 : 78 - 80
  • [39] A fluorescence resonance energy transfer-based aptasensor for the detection of ciprofloxacin
    Li, Binxi
    Wang, Ting
    Wang, Anqi
    Wang, Xue
    Qian, Meiru
    Zhu, Yongli
    Li, Taihua
    Chinese Journal of Analysis Laboratory, 2023, 42 (11) : 1483 - 1488
  • [40] Chemiluminescence resonance energy transfer-based immunostimulatory nanoparticles for sonoimmunotherapy
    Jeon, Jueun
    Yoon, Been
    Um, Wooram
    Song, Yeari
    Lee, Jeongjin
    You, Dong Gil
    An, Jae Yoon
    Park, Jae Hyung
    BIOMATERIALS, 2022, 283