Photostable and Proteolysis-Resistant Forster Resonance Energy Transfer-Based Calcium Biosensor

被引:5
|
作者
Nguyen, Dat [6 ]
Behrens, Danielle M. [6 ]
Sen, Sanjana [7 ]
Najdahmadi, Avid [4 ,8 ]
Pham, Jessica N. [9 ]
Speciale, Gaetano [9 ]
Lawrence, Micah M. [6 ]
Majumdar, Sudipta [9 ]
Weiss, Gregory A. [1 ,2 ]
Botvinick, Elliot L. [3 ,4 ,5 ]
机构
[1] Univ Calif Irvine, Dept Mol Biol & Biochem, Dept Chem, Irvine, CA 92697 USA
[2] Univ Calif Irvine, Dept Pharmaceut Sci, Irvine, CA 92697 USA
[3] Univ Calif Irvine, Beckman Laser Inst, Dept Biomed Engn, Irvine, CA 92697 USA
[4] Univ Calif Irvine, Med Clin, Irvine, CA 92697 USA
[5] Univ Calif Irvine, Dept Surg, Irvine, CA 92697 USA
[6] Univ Calif Irvine, Dept Biomed Engn, Irvine, CA 92697 USA
[7] Univ Calif Irvine, Dept Mol Biol & Biochem, Irvine, CA 92697 USA
[8] Univ Calif Irvine, Beckman Laser Inst, Irvine, CA 92697 USA
[9] Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA
基金
美国国家科学基金会;
关键词
FRET; PROTEIN; SENSORS; TAG;
D O I
10.1021/acs.analchem.0c00573
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Molecular sensors from protein engineering offer new methods to sensitively bind to and detect target analytes for a wide range of applications. For example, these sensors can be integrated into probes for implantation, and then yield new and valuable physiological information. Here, a new Forster resonance energy transfer (FRET)based sensor is integrated with an optical fiber to yield a device measuring free Ca2+. This membrane encapsulated optical fiber (MEOF) device is composed of a sensor matrix that fills poly(tetrafluoroethylene) (PTFE) with an engineered troponin C (TnC) protein fused to a pair of FRET fluorophores. The FRET efficiency is modulated upon Ca2+ ion binding. The probe further comprises a second, size-excluding filter membrane that is synthesized by filling the pores of a PTFE matrix with a poly(ethylene glycol) dimethacrylate (PEGDMA) hydrogel; this design ensures protection from circulating proteases and the foreign body response. The two membranes are stacked and placed on a thin, silica optical fiber for optical excitation and detection. Results show the biosensor responds to changes in Ca2+ concentration within minutes with a sensitivity ranging from 0.01 to 10 mM Ca2+, allowing discrimination of hyper- and hypocalcemia. Furthermore, the system reversibly binds Ca2+ to allow continuous monitoring. This work paves the way for the use of engineered structure-switching proteins for continuous optical monitoring in a large number of applications.
引用
收藏
页码:7683 / 7689
页数:7
相关论文
共 50 条
  • [21] Single-Molecule Forster Resonance Energy Transfer-Based Photosensitizer for Synergistic Photodynamic/Photothermal Therapy
    Zou, Yang
    Long, Saran
    Xiong, Tao
    Zhao, Xueze
    Sun, Wen
    Du, Jianjun
    Fan, Jiangli
    Peng, Xiaojun
    ACS CENTRAL SCIENCE, 2021, 7 (02) : 327 - 334
  • [22] Genetically Encoded Forster Resonance Energy Transfer-Based Biosensors Studied on the Single-Molecule Level
    Hoefig, Henning
    Otten, Julia
    Steffen, Victoria
    Pohl, Martina
    Boersma, Arnold J.
    Fitter, Joerg
    ACS SENSORS, 2018, 3 (08): : 1462 - 1470
  • [23] Fluorescent resonance energy transfer-based biosensor for detecting conformational changes of Pin1
    Hidaka, Masafumi
    Okabe, Emiko
    Hatakeyama, Kodai
    Zook, Heather
    Uchida, Chiyoko
    Uchida, Takafumi
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2018, 505 (02) : 399 - 404
  • [24] An intra-stimuli resonance energy transfer-based electrochemiluminescence biosensor for DNA methylation detection
    Wang, Huan
    Peng, Minghui
    Feng, Qiumei
    Liu, Jing
    Zhang, Lang
    Wang, Po
    CHEMICAL ENGINEERING JOURNAL, 2024, 492
  • [25] Advantages of substituting bioluminescence for fluorescence in a resonance energy transfer-based periplasmic binding protein biosensor
    Dacres, Helen
    Michie, Michelle
    Anderson, Alisha
    Trowell, Stephen C.
    Biosensors and Bioelectronics, 2013, 41 (01) : 459 - 464
  • [26] Advantages of substituting bioluminescence for fluorescence in a resonance energy transfer-based periplasmic binding protein biosensor
    Dacres, Helen
    Michie, Michelle
    Anderson, Alisha
    Trowell, Stephen C.
    BIOSENSORS & BIOELECTRONICS, 2013, 41 : 459 - 464
  • [27] Luminescent Core-Shell Imprinted Nanoparticles Engineered for Targeted Forster Resonance Energy Transfer-Based Sensing
    Descalzo, Ana B.
    Somoza, Clara
    Moreno-Bondi, Maria C.
    Orellana, Guillermo
    ANALYTICAL CHEMISTRY, 2013, 85 (11) : 5316 - 5320
  • [28] Resonance Energy Transfer-Based Approaches to Study GPCRs
    Ayoub, Mohammed Akli
    G PROTEIN-COUPLED RECEPTORS: SIGNALING, TRAFFICKING AND REGULATION, 2016, 132 : 255 - 292
  • [29] Development and implementation of a Forster Resonance Energy Transfer based biosensor for measuring intracellular tension and force.
    Hart, R. G.
    Kota, D.
    Brunmaier, L.
    Liu, J.
    Chandrasekar, I.
    MOLECULAR BIOLOGY OF THE CELL, 2017, 28
  • [30] Development and implementation of a Forster Resonance Energy Transfer based biosensor for measuring intracellular tension and force.
    Hart, R. G.
    Kota, D.
    Brunmaier, L.
    Liu, J.
    Chandrasekar, I.
    MOLECULAR BIOLOGY OF THE CELL, 2017, 28