Bayesian bandwidth estimation and semi-metric selection for a functional partial linear model with unknown error density

被引:1
|
作者
Shang, Han Lin [1 ,2 ]
机构
[1] Australian Natl Univ, Res Sch Finance Actuarial Studies & Stat, Level 4,Bldg 26C,Kingsley St, Canberra, ACT 2601, Australia
[2] Macquarie Univ, Dept Actuarial Studies & Business Analyt, Sydney, NSW, Australia
关键词
Functional Nadaraya-Watson estimator; scalar-on-function regression; Gaussian kernel mixture; Markov chain Monte Carlo; error-density estimation; spectroscopy; NONPARAMETRIC REGRESSION; MARGINAL LIKELIHOOD; MAXIMUM-LIKELIHOOD; INFERENCE; PREDICTION; QUANTILE;
D O I
10.1080/02664763.2020.1736527
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This study examines the optimal selections of bandwidth and semi-metric for a functional partial linear model. Our proposed method begins by estimating the unknown error density using a kernel density estimator of residuals, where the regression function, consisting of parametric and nonparametric components, can be estimated by functional principal component and functional Nadayara-Watson estimators. The estimation accuracy of the regression function and error density crucially depends on the optimal estimations of bandwidth and semi-metric. A Bayesian method is utilized to simultaneously estimate the bandwidths in the regression function and kernel error density by minimizing the Kullback-Leibler divergence. For estimating the regression function and error density, a series of simulation studies demonstrate that the functional partial linear model gives improved estimation and forecast accuracies compared with the functional principal component regression and functional nonparametric regression. Using a spectroscopy dataset, the functional partial linear model yields better forecast accuracy than some commonly used functional regression models. As a by-product of the Bayesian method, a pointwise prediction interval can be obtained, and marginal likelihood can be used to select the optimal semi-metric.
引用
收藏
页码:583 / 604
页数:22
相关论文
共 50 条