Bayesian bandwidth estimation and semi-metric selection for a functional partial linear model with unknown error density

被引:1
|
作者
Shang, Han Lin [1 ,2 ]
机构
[1] Australian Natl Univ, Res Sch Finance Actuarial Studies & Stat, Level 4,Bldg 26C,Kingsley St, Canberra, ACT 2601, Australia
[2] Macquarie Univ, Dept Actuarial Studies & Business Analyt, Sydney, NSW, Australia
关键词
Functional Nadaraya-Watson estimator; scalar-on-function regression; Gaussian kernel mixture; Markov chain Monte Carlo; error-density estimation; spectroscopy; NONPARAMETRIC REGRESSION; MARGINAL LIKELIHOOD; MAXIMUM-LIKELIHOOD; INFERENCE; PREDICTION; QUANTILE;
D O I
10.1080/02664763.2020.1736527
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This study examines the optimal selections of bandwidth and semi-metric for a functional partial linear model. Our proposed method begins by estimating the unknown error density using a kernel density estimator of residuals, where the regression function, consisting of parametric and nonparametric components, can be estimated by functional principal component and functional Nadayara-Watson estimators. The estimation accuracy of the regression function and error density crucially depends on the optimal estimations of bandwidth and semi-metric. A Bayesian method is utilized to simultaneously estimate the bandwidths in the regression function and kernel error density by minimizing the Kullback-Leibler divergence. For estimating the regression function and error density, a series of simulation studies demonstrate that the functional partial linear model gives improved estimation and forecast accuracies compared with the functional principal component regression and functional nonparametric regression. Using a spectroscopy dataset, the functional partial linear model yields better forecast accuracy than some commonly used functional regression models. As a by-product of the Bayesian method, a pointwise prediction interval can be obtained, and marginal likelihood can be used to select the optimal semi-metric.
引用
收藏
页码:583 / 604
页数:22
相关论文
共 50 条
  • [41] Automatic estimation procedure in partial linear model with functional data
    Germán Aneiros-Pérez
    Philippe Vieu
    [J]. Statistical Papers, 2011, 52 : 751 - 771
  • [42] Automatic estimation procedure in partial linear model with functional data
    Aneiros-Perez, German
    Vieu, Philippe
    [J]. STATISTICAL PAPERS, 2011, 52 (04) : 751 - 771
  • [43] Composite expectile estimation in partial functional linear regression model
    Yu, Ping
    Song, Xinyuan
    Du, Jiang
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2024, 203
  • [44] Local bandwidth selection for kernel density estimation in a bifurcating Markov chain model
    Bitseki Penda, S. Valere
    Roche, Angelina
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2020, 32 (03) : 535 - 562
  • [45] Estimation and variable selection in partial linear single index models with error-prone linear covariates
    Zhang, Jun
    Wang, Xiaoguang
    Yu, Yao
    Gai, Yujie
    [J]. STATISTICS, 2014, 48 (05) : 1048 - 1070
  • [46] Error density estimation in high-dimensional sparse linear model
    Feng Zou
    Hengjian Cui
    [J]. Annals of the Institute of Statistical Mathematics, 2020, 72 : 427 - 449
  • [47] Robust Error Density Estimation in Ultrahigh Dimensional Sparse Linear Model
    Feng ZOU
    Heng Jian CUI
    [J]. Acta Mathematica Sinica,English Series, 2022, (06) : 963 - 984
  • [48] Robust Error Density Estimation in Ultrahigh Dimensional Sparse Linear Model
    Zou, Feng
    Cui, Heng Jian
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2022, 38 (06) : 963 - 984
  • [49] Error density estimation in high-dimensional sparse linear model
    Zou, Feng
    Cui, Hengjian
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2020, 72 (02) : 427 - 449
  • [50] Robust Error Density Estimation in Ultrahigh Dimensional Sparse Linear Model
    Feng Zou
    Heng Jian Cui
    [J]. Acta Mathematica Sinica, English Series, 2022, 38 : 963 - 984