mBEEF: An accurate semi-local Bayesian error estimation density functional

被引:119
|
作者
Wellendorff, Jess [1 ,2 ]
Lundgaard, Keld T. [1 ,3 ]
Jacobsen, Karsten W. [3 ]
Bligaard, Thomas [1 ,2 ]
机构
[1] SLAC Natl Accelerator Lab, SUNCAT Ctr Interface Sci & Catalysis, Menlo Pk, CA 94025 USA
[2] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA
[3] Tech Univ Denmark, Dept Phys, Ctr Atom Scale Mat Design CAMD, DK-2800 Lyngby, Denmark
来源
JOURNAL OF CHEMICAL PHYSICS | 2014年 / 140卷 / 14期
关键词
GENERALIZED GRADIENT APPROXIMATION; HIGH-THROUGHPUT; ADSORPTION ENERGIES; CO ADSORPTION; SURFACE; CHEMISTRY; DESIGN; IDENTIFICATION; DATABASE;
D O I
10.1063/1.4870397
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present a general-purpose meta-generalized gradient approximation (MGGA) exchange-correlation functional generated within the Bayesian error estimation functional framework [J. Wellendorff, K. T. Lundgaard, A. Mogelhoj, V. Petzold, D. D. Landis, J. K. Norskov, T. Bligaard, and K. W. Jacobsen, Phys. Rev. B 85, 235149 (2012)]. The functional is designed to give reasonably accurate density functional theory (DFT) predictions of a broad range of properties in materials physics and chemistry, while exhibiting a high degree of transferability. Particularly, it improves upon solid cohesive energies and lattice constants over the BEEF-vdW functional without compromising high performance on adsorption and reaction energies. We thus expect it to be particularly well-suited for studies in surface science and catalysis. An ensemble of functionals for error estimation in DFT is an intrinsic feature of exchange-correlation models designed this way, and we show how the Bayesian ensemble may provide a systematic analysis of the reliability of DFT based simulations. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Calculating the Response of Molecular Chains with Semi-Local Density Functional Theory
    Armiento, Rickard
    [J]. COMPUTATIONAL METHODS IN SCIENCE AND ENGINEERING, VOL 1: ADVANCES IN COMPUTATIONAL SCIENCE, 2009, 1108 : 98 - 107
  • [2] Atomic polarizability by semi-local and non-local density-functional approximations
    Cucinotta, C.
    Ballone, P.
    [J]. PHYSICA SCRIPTA, 2004, T109 : 166 - 169
  • [3] mBEEF-vdW: Robust fitting of error estimation density functionals
    Lundgaard, Keld T.
    Wellendorff, Jess
    Voss, Johannes
    Jacobsen, Karsten W.
    Bligaard, Thomas
    [J]. PHYSICAL REVIEW B, 2016, 93 (23)
  • [4] SEMI-LOCAL VARIATIONAL OPTICAL FLOW ESTIMATION
    Fortun, Denis
    Kervrann, Charles
    [J]. 2012 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2012), 2012, : 77 - 80
  • [5] Bayesian error estimation in density-functional theory
    Mortensen, JJ
    Kaasbjerg, K
    Frederiksen, SL
    Norskov, JK
    Sethna, JP
    Jacobsen, KW
    [J]. PHYSICAL REVIEW LETTERS, 2005, 95 (21)
  • [6] Semi-Local Density Functional for the Exchange-Correlation Energy of Electrons in Two Dimensions
    Rasanen, E.
    Pittalis, S.
    Vilhena, J. G.
    Marques, M. A. L.
    [J]. INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2010, 110 (12) : 2308 - 2314
  • [7] Bayesian bandwidth estimation for a semi-functional partial linear regression model with unknown error density
    Shang, Han Lin
    [J]. COMPUTATIONAL STATISTICS, 2014, 29 (3-4) : 829 - 848
  • [8] Bayesian bandwidth estimation for a semi-functional partial linear regression model with unknown error density
    Han Lin Shang
    [J]. Computational Statistics, 2014, 29 : 829 - 848
  • [9] Bayesian bandwidth estimation and semi-metric selection for a functional partial linear model with unknown error density
    Shang, Han Lin
    [J]. JOURNAL OF APPLIED STATISTICS, 2021, 48 (04) : 583 - 604
  • [10] Using the electron localization function to correct for confinement physics in semi-local density functional theory
    Hao, Feng
    Armiento, Rickard
    Mattsson, Ann E.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2014, 140 (18):