mBEEF: An accurate semi-local Bayesian error estimation density functional

被引:119
|
作者
Wellendorff, Jess [1 ,2 ]
Lundgaard, Keld T. [1 ,3 ]
Jacobsen, Karsten W. [3 ]
Bligaard, Thomas [1 ,2 ]
机构
[1] SLAC Natl Accelerator Lab, SUNCAT Ctr Interface Sci & Catalysis, Menlo Pk, CA 94025 USA
[2] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA
[3] Tech Univ Denmark, Dept Phys, Ctr Atom Scale Mat Design CAMD, DK-2800 Lyngby, Denmark
来源
JOURNAL OF CHEMICAL PHYSICS | 2014年 / 140卷 / 14期
关键词
GENERALIZED GRADIENT APPROXIMATION; HIGH-THROUGHPUT; ADSORPTION ENERGIES; CO ADSORPTION; SURFACE; CHEMISTRY; DESIGN; IDENTIFICATION; DATABASE;
D O I
10.1063/1.4870397
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present a general-purpose meta-generalized gradient approximation (MGGA) exchange-correlation functional generated within the Bayesian error estimation functional framework [J. Wellendorff, K. T. Lundgaard, A. Mogelhoj, V. Petzold, D. D. Landis, J. K. Norskov, T. Bligaard, and K. W. Jacobsen, Phys. Rev. B 85, 235149 (2012)]. The functional is designed to give reasonably accurate density functional theory (DFT) predictions of a broad range of properties in materials physics and chemistry, while exhibiting a high degree of transferability. Particularly, it improves upon solid cohesive energies and lattice constants over the BEEF-vdW functional without compromising high performance on adsorption and reaction energies. We thus expect it to be particularly well-suited for studies in surface science and catalysis. An ensemble of functionals for error estimation in DFT is an intrinsic feature of exchange-correlation models designed this way, and we show how the Bayesian ensemble may provide a systematic analysis of the reliability of DFT based simulations. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] DENSITY-FUNCTIONAL FORMALISM - SOURCES OF ERROR IN LOCAL-DENSITY APPROXIMATIONS
    JONES, RO
    GUNNARSSON, O
    [J]. PHYSICAL REVIEW LETTERS, 1985, 55 (01) : 107 - 110
  • [42] Local linear estimation of the conditional density for functional data
    Demongeot, Jacques
    Laksaci, Ali
    Madani, Fethi
    Rachdi, Mustapha
    [J]. COMPTES RENDUS MATHEMATIQUE, 2010, 348 (15-16) : 931 - 934
  • [43] Ground-to-excited derivative couplings for the density functional-based tight-binding method: semi-local and long-range corrected formulations
    Niehaus, Thomas A.
    [J]. THEORETICAL CHEMISTRY ACCOUNTS, 2021, 140 (04)
  • [44] Ground-to-excited derivative couplings for the density functional-based tight-binding method: semi-local and long-range corrected formulations
    Thomas A. Niehaus
    [J]. Theoretical Chemistry Accounts, 2021, 140
  • [45] Functional regression approximate Bayesian computation for Gaussian process density estimation
    Rodrigues, G. S.
    Nott, David J.
    Sisson, S. A.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 103 : 229 - 241
  • [46] Local Scaling Correction for Reducing Delocalization Error in Density Functional Approximations
    Li, Chen
    Zheng, Xiao
    Cohen, Aron J.
    Mori-Sanchez, Paula
    Yang, Weitao
    [J]. PHYSICAL REVIEW LETTERS, 2015, 114 (05)
  • [47] Estimation and Inference in Semi-Functional Partially Linear Measurement Error Models
    Zhu, Hanbing
    Zhang, Riquan
    Zhu, Gen
    [J]. JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2020, 33 (04) : 1179 - 1199
  • [48] Density Functional Physicality in Electronic Coupling Estimation: Benchmarks and Error Analysis
    Kim, Hyungjun
    Goodson, Theodore, III
    Zimmerman, Paul M.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2017, 8 (14): : 3242 - 3248
  • [49] Estimation and Inference in Semi-Functional Partially Linear Measurement Error Models
    ZHU Hanbing
    ZHANG Riquan
    ZHU Gen
    [J]. Journal of Systems Science & Complexity, 2020, 33 (04) : 1179 - 1199
  • [50] Estimation and Inference in Semi-Functional Partially Linear Measurement Error Models
    Hanbing Zhu
    Riquan Zhang
    Gen Zhu
    [J]. Journal of Systems Science and Complexity, 2020, 33 : 1179 - 1199