Bayesian bandwidth estimation for a nonparametric functional regression model with unknown error density

被引:12
|
作者
Shang, Han Lin [1 ]
机构
[1] Univ Southampton, ESRC Ctr Populat Change, Southampton SO17 1BJ, Hants, England
基金
澳大利亚研究理事会;
关键词
Functional Nadaraya-Watson estimator; Kernel density estimation; Markov chain Monte Carlo; Mixture error density; Spectroscopy; STATISTICAL VIEW; MORTALITY; CONSISTENCY; FERTILITY; BOOTSTRAP; RATES;
D O I
10.1016/j.csda.2013.05.006
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Error density estimation in a nonparametric functional regression model with functional predictor and scalar response is considered. The unknown error density is approximated by a mixture of Gaussian densities with means being the individual residuals, and variance as a constant parameter. This proposed mixture error density has a form of a kernel density estimator of residuals, where the regression function is estimated by the functional Nadaraya-Watson estimator. A Bayesian bandwidth estimation procedure that can simultaneously estimate the bandwidths in the kernel-form error density and the functional Nadaraya-Watson estimator is proposed. A kernel likelihood and posterior for the bandwidth parameters are derived under the kernel-form error density. A series of simulation studies show that the proposed Bayesian estimation method performs on par with the functional cross validation for estimating the regression function, but it performs better than the likelihood cross validation for estimating the regression error density. The proposed Bayesian procedure is also applied to a nonparametric functional regression model, where the functional predictors are spectroscopy wavelengths and the scalar responses are fat/protein/moisture content, respectively. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:185 / 198
页数:14
相关论文
共 50 条
  • [1] Bayesian bandwidth estimation for a functional nonparametric regression model with mixed types of regressors and unknown error density
    Shang, Han Lin
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2014, 26 (03) : 599 - 615
  • [2] Bayesian bandwidth estimation for a semi-functional partial linear regression model with unknown error density
    Shang, Han Lin
    [J]. COMPUTATIONAL STATISTICS, 2014, 29 (3-4) : 829 - 848
  • [3] Bayesian bandwidth estimation for a semi-functional partial linear regression model with unknown error density
    Han Lin Shang
    [J]. Computational Statistics, 2014, 29 : 829 - 848
  • [4] A sampling algorithm for bandwidth estimation in a nonparametric regression model with a flexible error density
    Zhang, Xibin
    King, Maxwell L.
    Shang, Han Lin
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 78 : 218 - 234
  • [5] Bayesian bandwidth estimation and semi-metric selection for a functional partial linear model with unknown error density
    Shang, Han Lin
    [J]. JOURNAL OF APPLIED STATISTICS, 2021, 48 (04) : 583 - 604
  • [6] Bayesian bandwidth estimation for local linear fitting in nonparametric regression models
    Shang, Han Lin
    Zhang, Xibin
    [J]. STUDIES IN NONLINEAR DYNAMICS AND ECONOMETRICS, 2022, 26 (01): : 55 - 71
  • [7] The Application of Taylor Expansion to Error Density Estimation Nonparametric Regression
    Zeng Qingjian
    Li Qing
    [J]. FOURTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2012), 2012, 8334
  • [8] Adaptive estimation in the functional nonparametric regression model
    Chagny, Gaelle
    Roche, Angelina
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2016, 146 : 105 - 118
  • [9] Bayesian Bandwidth Selection for a Nonparametric Regression Model with Mixed Types of Regressors
    Zhang, Xibin
    King, Maxwell L.
    Shang, Han Lin
    [J]. ECONOMETRICS, 2016, 4 (02)
  • [10] Nonparametric estimation of the relative error in functional regression and censored data
    Mechab, Boubaker
    Hamidi, Nesrine
    Benaissa, Samir
    [J]. CHILEAN JOURNAL OF STATISTICS, 2019, 10 (02): : 177 - 195