Estimation of a functional single index model with dependent errors and unknown error density

被引:6
|
作者
Shang, Han Lin [1 ]
机构
[1] Australian Natl Univ, Res Sch Finance Actuarial Studies & Stat, Level 4,Bldg 26C,Kingsley St, Acton Canberra, ACT 2601, Australia
关键词
Error density estimation; Gaussian kernel mixture; Markov chain Monte Carlo; Nadaraya-Watson estimator; Scalar-on-function regression; Spectroscopy; BAYESIAN BANDWIDTH ESTIMATION; NONPARAMETRIC REGRESSION-MODEL; PRINCIPAL COMPONENT REGRESSION; SELECTION;
D O I
10.1080/03610918.2018.1535068
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The problem of error density estimation for a functional single index model with dependent errors is studied. A Bayesian method is utilized to simultaneously estimate the bandwidths in the kernel-form error density and regression function, under an autoregressive error structure. For estimating both the regression function and error density, empirical studies show that the functional single index model gives improved estimation and prediction accuracies than any nonparametric functional regression considered. Furthermore, estimation of error density facilitates the construction of prediction interval for the response variable.
引用
收藏
页码:3111 / 3133
页数:23
相关论文
共 50 条