Discovering spatio-temporal action tubes

被引:10
|
作者
Ye, Yuancheng [1 ,2 ]
Yang, Xiaodong [3 ]
Tian, YingLi [1 ,2 ]
机构
[1] CUNY, City Coll, New York, NY 10021 USA
[2] CUNY, Grad Ctr, New York, NY 10016 USA
[3] NVIDIA Res, Santa Clara, CA USA
关键词
Spatio-temporal action detection; Deep neural networks;
D O I
10.1016/j.jvcir.2018.12.019
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we address the challenging problem of spatial and temporal action detection in videos. We first develop an effective approach to localize frame-level action regions through integrating static and kinematic information by the early- and late-fusion detection scheme. With the intention of exploring important temporal connections among the detected action regions, we propose a tracking-by-point-matching algorithm to stitch the discrete action regions into a continuous spatio-temporal action tube. Recurrent 3D convolutional neural network is used to predict action categories and determine temporal boundaries of the generated tubes. We then introduce an action footprint map to refine the candidate tubes based on the action-specific spatial characteristics preserved in the convolutional layers of R3DCNN. In the extensive experiments, our method achieves superior detection results on the three public benchmark datasets: UCFSports, J-HMDB and UCF101. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:515 / 524
页数:10
相关论文
共 50 条
  • [1] Video Segmentation with Spatio-Temporal Tubes
    Trichet, Remi
    Nevatia, Ramakant
    [J]. 2013 10TH IEEE INTERNATIONAL CONFERENCE ON ADVANCED VIDEO AND SIGNAL BASED SURVEILLANCE (AVSS 2013), 2013, : 330 - 335
  • [2] On discovering moving clusters in spatio-temporal data
    Kalnis, P
    Mamoulis, N
    Bakiras, S
    [J]. ADVANCES IN SPATIAL AND TEMPORAL DATABASES, PROCEEDINGS, 2005, 3633 : 364 - 381
  • [3] A framework for discovering spatio-temporal cohesive networks
    Yoo, Jin Soung
    Hwang, Joengmin
    [J]. ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PROCEEDINGS, 2008, 5012 : 1056 - +
  • [4] Online Hierarchical Linking of Action Tubes for Spatio-Temporal Action Detection Based on Multiple Clues
    Su, Shaowen
    Zhang, Yan
    [J]. IEEE ACCESS, 2024, 12 : 54661 - 54672
  • [5] Discovering correlated spatio-temporal changes in evolving graphs
    Chan, Jeffrey
    Bailey, James
    Leckie, Christopher
    [J]. KNOWLEDGE AND INFORMATION SYSTEMS, 2008, 16 (01) : 53 - 96
  • [6] DISCOVERING AND LINKING SPATIO-TEMPORAL BIG LINKED DATA
    Zinke, Christian
    Ngomo, Axel-Cyrille Ngonga
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 411 - 414
  • [7] Discovering Spatio-Temporal Rationales for Video Question Answering
    Li, Yicong
    Xiao, Junbin
    Feng, Chun
    Wang, Xiang
    Chua, Tat-Seng
    [J]. 2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 13823 - 13832
  • [8] Discovering association patterns in large spatio-temporal databases
    Lee, Eric M. H.
    Chan, Keith C. C.
    [J]. ICDM 2006: SIXTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, WORKSHOPS, 2006, : 349 - +
  • [9] Discovering Spatio-temporal Relationships among IoT Services
    Huang, Bing
    Bouguettaya, Athman
    Neiat, Azadeh Ghari
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON WEB SERVICES (IEEE ICWS 2018), 2018, : 347 - 350
  • [10] Discovering spatio-temporal relationships in the distribution of building fires
    Spatenkova, Olga
    Virrantaus, Kirsi
    [J]. FIRE SAFETY JOURNAL, 2013, 62 : 49 - 63