Discovering spatio-temporal relationships in the distribution of building fires

被引:34
|
作者
Spatenkova, Olga [1 ]
Virrantaus, Kirsi [2 ]
机构
[1] Czech Univ Life Sci Prague, Fac Environm Sci, Prague 16521 6, Suchdol, Czech Republic
[2] Aalto Univ, Sch Engn, Dept Real Estate Planning & Geoinformat, FI-00076 Aalto, Finland
关键词
Spatio-temporal data mining; Visualisation; Point patterns; Geographically weighted regression; Risk modelling; Building fires; MODEL; RISK;
D O I
10.1016/j.firesaf.2013.07.001
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This paper focuses on a systematic risk mapping for mitigation purposes, which plays a crucial role in the context of the emergency management. It applies principles of the knowledge discovery and data mining to support development of the fire risk model at a city level. The study offers a set of advanced methods of the spatial and spatio-temporal analysis that share the same goal - to unveil causal relationships in the incident data. Each of the methods, however, reveals different aspects of the relations, which represents a valuable source of information. The results of this research thus enhance understanding of the phenomenon being studied and enable more accurate risk maps to be created. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:49 / 63
页数:15
相关论文
共 50 条
  • [1] Discovering Spatio-temporal Relationships among IoT Services
    Huang, Bing
    Bouguettaya, Athman
    Neiat, Azadeh Ghari
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON WEB SERVICES (IEEE ICWS 2018), 2018, : 347 - 350
  • [2] Discovering spatio-temporal action tubes
    Ye, Yuancheng
    Yang, Xiaodong
    Tian, YingLi
    [J]. JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2019, 58 : 515 - 524
  • [3] SPATIO-TEMPORAL DISTRIBUTION OF FOREST FIRES AND VEGETATION RECOVERY IN THE NORTHEAST OF CHINA
    Yi, Kunpeng
    Tani, Hiroshi
    Wang, Xiufeng
    Guo, Meng
    Zhong, Guosheng
    [J]. 2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 6423 - 6426
  • [4] A spatio-temporal analysis of fires in South Africa
    Strydom, Sheldon
    Savage, Michael J.
    [J]. SOUTH AFRICAN JOURNAL OF SCIENCE, 2016, 112 (11-12)
  • [5] On discovering moving clusters in spatio-temporal data
    Kalnis, P
    Mamoulis, N
    Bakiras, S
    [J]. ADVANCES IN SPATIAL AND TEMPORAL DATABASES, PROCEEDINGS, 2005, 3633 : 364 - 381
  • [6] A framework for discovering spatio-temporal cohesive networks
    Yoo, Jin Soung
    Hwang, Joengmin
    [J]. ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PROCEEDINGS, 2008, 5012 : 1056 - +
  • [7] BUILDING A NATIONAL SPATIO-TEMPORAL DATACUBE
    Neagul, Marian
    Nedelcu, Ion
    Munteanu, Alexandru
    [J]. IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 5089 - 5092
  • [8] Rough spatio-temporal topological relationships
    Bassiri, Anahid
    Malek, Mohammad R.
    Alesheikh, Ali A.
    [J]. COMPUTATIONAL INTELLIGENCE IN DECISION AND CONTROL, 2008, 1 : 127 - 132
  • [9] Spatio-temporal patterns of extreme fires in Amazonian forests
    Cano-Crespo, Ana
    Traxl, Dominik
    Thonicke, Kirsten
    [J]. EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2021, 230 (14-15): : 3033 - 3044
  • [10] Spatio-temporal patterns of extreme fires in Amazonian forests
    Ana Cano-Crespo
    Dominik Traxl
    Kirsten Thonicke
    [J]. The European Physical Journal Special Topics, 2021, 230 : 3033 - 3044