A framework for discovering spatio-temporal cohesive networks

被引:0
|
作者
Yoo, Jin Soung [1 ]
Hwang, Joengmin [2 ]
机构
[1] Indiana Univ Purdue Univ, Dept Comp Sci, Ft Wayne, IN 46805 USA
[2] Univ Minnesota, Dept Comp Sci & Engn, Minneapolis, MN USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A spatio-temporal cohesive network represents a social network in which people often interact closely in both space and time. Spatially and temporally close people tend to share information and show homogeneous behavior. We discuss modeling social networks from spatio-temporal human activity data, and alternative interest measures for estimating the strength of subgroup cohesion in spatial and temporal space. We present an algorithm for mining spatio-temporal cohesive networks.
引用
收藏
页码:1056 / +
页数:2
相关论文
共 50 条
  • [1] A Framework for Discovering Evolving Domain Related Spatio-Temporal Patterns in Twitter
    Shi, Yan
    Deng, Min
    Yang, Xuexi
    Liu, Qiliang
    Zhao, Liang
    Lu, Chang-Tien
    [J]. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2016, 5 (10):
  • [2] Discovering spatio-temporal action tubes
    Ye, Yuancheng
    Yang, Xiaodong
    Tian, YingLi
    [J]. JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2019, 58 : 515 - 524
  • [3] Discovering Dynamic Salient Regions for Spatio-Temporal Graph Neural Networks
    Duta, Iulia
    Nicolicioiu, Andrei
    Leordeanu, Marius
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [4] On discovering moving clusters in spatio-temporal data
    Kalnis, P
    Mamoulis, N
    Bakiras, S
    [J]. ADVANCES IN SPATIAL AND TEMPORAL DATABASES, PROCEEDINGS, 2005, 3633 : 364 - 381
  • [5] Discovering Urban Spatio-temporal Structure from Time-Evolving Traffic Networks
    Wang, Jingyuan
    Gao, Fei
    Cui, Peng
    Li, Chao
    Xiong, Zhang
    [J]. WEB TECHNOLOGIES AND APPLICATIONS, APWEB 2014, 2014, 8709 : 93 - 104
  • [6] Discovering correlated spatio-temporal changes in evolving graphs
    Chan, Jeffrey
    Bailey, James
    Leckie, Christopher
    [J]. KNOWLEDGE AND INFORMATION SYSTEMS, 2008, 16 (01) : 53 - 96
  • [7] DISCOVERING AND LINKING SPATIO-TEMPORAL BIG LINKED DATA
    Zinke, Christian
    Ngomo, Axel-Cyrille Ngonga
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 411 - 414
  • [8] An efficient spatio-temporal index for spatio-temporal query in wireless sensor networks
    Lee, Donhee
    Yoon, Kyoungro
    [J]. KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2017, 11 (10): : 4888 - 4908
  • [9] Discovering association patterns in large spatio-temporal databases
    Lee, Eric M. H.
    Chan, Keith C. C.
    [J]. ICDM 2006: SIXTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, WORKSHOPS, 2006, : 349 - +
  • [10] Discovering Spatio-Temporal Rationales for Video Question Answering
    Li, Yicong
    Xiao, Junbin
    Feng, Chun
    Wang, Xiang
    Chua, Tat-Seng
    [J]. 2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 13823 - 13832