Discovering Urban Spatio-temporal Structure from Time-Evolving Traffic Networks

被引:0
|
作者
Wang, Jingyuan [1 ]
Gao, Fei [1 ]
Cui, Peng [2 ]
Li, Chao [1 ,3 ]
Xiong, Zhang [1 ]
机构
[1] Beihang Univ, Sch Comp Sci & Engn, Beijing 100191, Peoples R China
[2] Tsinghua Univ, Dept Comp Sci & Technol, Beijing, Peoples R China
[3] Res Inst Beihang Univ, Shenzhen, Peoples R China
基金
国家高技术研究发展计划(863计划);
关键词
urban computing; pattern discovery;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The traffic networks reflect the pulse and structure of a city and shows some dynamic characteristic. Previous research in mining structure from networks mostly focus on static networks and fail to exploit the temporal patterns. In this paper, we aim to solve the problem of discovering the urban spatio-temporal structure from time-evolving traffic networks. We model the time-evolving traffic networks into a 3-order tensor, each element of which indicates the volume of traffic from i-th origin area to j-th destination area in k-th time domain. Considering traffic data and urban contextual knowledge together, we propose a regularized Non-negative Tucker Decomposition (rNTD) method, which discovers the spatial clusters, temporal patterns and relations among them simultaneously. Abundant experiments are conducted in a large dataset collected from Beijing. Results show that our method outperforms the baseline method.
引用
收藏
页码:93 / 104
页数:12
相关论文
共 50 条
  • [1] Measuring Spatio-temporal Efficiency: An R Implementation for Time-Evolving Units
    Digkas, Georgios
    Petridis, Konstantinos
    Chatzigeorgiou, Alexander
    Stiakakis, Emmanouil
    Emrouznejad, Ali
    [J]. COMPUTATIONAL ECONOMICS, 2020, 56 (04) : 843 - 864
  • [2] Measuring Spatio-temporal Efficiency: An R Implementation for Time-Evolving Units
    Georgios Digkas
    Konstantinos Petridis
    Alexander Chatzigeorgiou
    Emmanouil Stiakakis
    Ali Emrouznejad
    [J]. Computational Economics, 2020, 56 : 843 - 864
  • [3] Spatio-Temporal Congestion Patterns in Urban Traffic Networks
    Rempe, Felix
    Huber, Gerhard
    Bogenberger, Klaus
    [J]. INTERNATIONAL SYMPOSIUM ON ENHANCING HIGHWAY PERFORMANCE (ISEHP), (7TH INTERNATIONAL SYMPOSIUM ON HIGHWAY CAPACITY AND QUALITY OF SERVICE, 3RD INTERNATIONAL SYMPOSIUM ON FREEWAY AND TOLLWAY OPERATIONS), 2016, 15 : 513 - 524
  • [4] Discovering correlated spatio-temporal changes in evolving graphs
    Chan, Jeffrey
    Bailey, James
    Leckie, Christopher
    [J]. KNOWLEDGE AND INFORMATION SYSTEMS, 2008, 16 (01) : 53 - 96
  • [5] Discovering correlated spatio-temporal changes in evolving graphs
    Jeffrey Chan
    James Bailey
    Christopher Leckie
    [J]. Knowledge and Information Systems, 2008, 16 : 53 - 96
  • [6] Discovering urban mobility structure: a spatio-temporal representational learning approach
    Duan, Xiaoqi
    Zhang, Tong
    Xu, Zhibang
    Wan, Qiao
    Yan, Jinbiao
    Wang, Wangshu
    Tian, Youliang
    [J]. INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2023, 16 (02) : 4044 - 4072
  • [7] A framework for discovering spatio-temporal cohesive networks
    Yoo, Jin Soung
    Hwang, Joengmin
    [J]. ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PROCEEDINGS, 2008, 5012 : 1056 - +
  • [8] Spatio-temporal modeling of connectome-scale brain network interactions via time-evolving graphs
    Yuan, Jing
    Li, Xiang
    Zhang, Jinhe
    Luo, Liao
    Dong, Qinglin
    Lv, Jinglei
    Zhao, Yu
    Jiang, Xi
    Zhang, Shu
    Zhang, Wei
    Liu, Tianming
    [J]. NEUROIMAGE, 2018, 180 : 350 - 369
  • [9] Spatio-Temporal Pyramid Networks for Traffic Forecasting
    Hu, Jia
    Wang, Chu
    Lin, Xianghong
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: RESEARCH TRACK, ECML PKDD 2023, PT I, 2023, 14169 : 339 - 354
  • [10] Spatio-temporal Traffic with Mobility in Poisson Networks
    Wang, Gang
    Zhong, Yi
    Wu, Meifang
    Han, Tao
    [J]. 2018 IEEE GLOBECOM WORKSHOPS (GC WKSHPS), 2018,