Discovering spatio-temporal action tubes

被引:10
|
作者
Ye, Yuancheng [1 ,2 ]
Yang, Xiaodong [3 ]
Tian, YingLi [1 ,2 ]
机构
[1] CUNY, City Coll, New York, NY 10021 USA
[2] CUNY, Grad Ctr, New York, NY 10016 USA
[3] NVIDIA Res, Santa Clara, CA USA
关键词
Spatio-temporal action detection; Deep neural networks;
D O I
10.1016/j.jvcir.2018.12.019
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we address the challenging problem of spatial and temporal action detection in videos. We first develop an effective approach to localize frame-level action regions through integrating static and kinematic information by the early- and late-fusion detection scheme. With the intention of exploring important temporal connections among the detected action regions, we propose a tracking-by-point-matching algorithm to stitch the discrete action regions into a continuous spatio-temporal action tube. Recurrent 3D convolutional neural network is used to predict action categories and determine temporal boundaries of the generated tubes. We then introduce an action footprint map to refine the candidate tubes based on the action-specific spatial characteristics preserved in the convolutional layers of R3DCNN. In the extensive experiments, our method achieves superior detection results on the three public benchmark datasets: UCFSports, J-HMDB and UCF101. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:515 / 524
页数:10
相关论文
共 50 条
  • [31] Sorting Atomic Activities for Discovering Spatio-temporal Patterns in Dynamic Scenes
    Zen, Gloria
    Ricci, Elisa
    Messelodi, Stefano
    Sebe, Nicu
    [J]. IMAGE ANALYSIS AND PROCESSING - ICIAP 2011, PT I, 2011, 6978 : 207 - 216
  • [32] Discovering Dynamic Salient Regions for Spatio-Temporal Graph Neural Networks
    Duta, Iulia
    Nicolicioiu, Andrei
    Leordeanu, Marius
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [33] A Framework for Discovering Evolving Domain Related Spatio-Temporal Patterns in Twitter
    Shi, Yan
    Deng, Min
    Yang, Xuexi
    Liu, Qiliang
    Zhao, Liang
    Lu, Chang-Tien
    [J]. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2016, 5 (10):
  • [34] What's going on? Discovering Spatio-Temporal Dependencies in Dynamic Scenes
    Kuettel, Daniel
    Breitenstein, Michael D.
    Van Gool, Luc
    Ferrari, Vittorio
    [J]. 2010 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2010, : 1951 - 1958
  • [35] Spatio-temporal patterns of action potentials in a single neuron
    Jimbo, Y
    Torimitsu, K
    Kulagina, IB
    Korogod, SM
    [J]. EUROPEAN JOURNAL OF NEUROSCIENCE, 2000, 12 : 383 - 383
  • [36] Spatio-temporal Video Autoencoder for Human Action Recognition
    Sousa e Santos, Anderson Carlos
    Pedrini, Helio
    [J]. PROCEEDINGS OF THE 14TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS (VISAPP), VOL 5, 2019, : 114 - 123
  • [37] Spatio-Temporal Steerable Pyramid for Human Action Recognition
    Zhen, Xiantong
    Shao, Ling
    [J]. 2013 10TH IEEE INTERNATIONAL CONFERENCE AND WORKSHOPS ON AUTOMATIC FACE AND GESTURE RECOGNITION (FG), 2013,
  • [38] Spatio-temporal Channel Correlation Networks for Action Classification
    Diba, Ali
    Fayyaz, Mohsen
    Sharma, Vivek
    Arzani, M. Mahdi
    Yousefzadeh, Rahman
    Gall, Juergen
    Van Gool, Luc
    [J]. COMPUTER VISION - ECCV 2018, PT IV, 2018, 11208 : 299 - 315
  • [39] Long term spatio-temporal modeling for action detection
    Tapaswi, Makarand
    Kumar, Vijay
    Laptev, Ivan
    [J]. COMPUTER VISION AND IMAGE UNDERSTANDING, 2021, 210
  • [40] Spatio-temporal human action localization in indoor surveillances
    Liu, Zihao
    Yan, Danfeng
    Cai, Yuanqiang
    Song, Yan
    [J]. Pattern Recognition, 2024, 147