Discovering spatio-temporal action tubes

被引:10
|
作者
Ye, Yuancheng [1 ,2 ]
Yang, Xiaodong [3 ]
Tian, YingLi [1 ,2 ]
机构
[1] CUNY, City Coll, New York, NY 10021 USA
[2] CUNY, Grad Ctr, New York, NY 10016 USA
[3] NVIDIA Res, Santa Clara, CA USA
关键词
Spatio-temporal action detection; Deep neural networks;
D O I
10.1016/j.jvcir.2018.12.019
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we address the challenging problem of spatial and temporal action detection in videos. We first develop an effective approach to localize frame-level action regions through integrating static and kinematic information by the early- and late-fusion detection scheme. With the intention of exploring important temporal connections among the detected action regions, we propose a tracking-by-point-matching algorithm to stitch the discrete action regions into a continuous spatio-temporal action tube. Recurrent 3D convolutional neural network is used to predict action categories and determine temporal boundaries of the generated tubes. We then introduce an action footprint map to refine the candidate tubes based on the action-specific spatial characteristics preserved in the convolutional layers of R3DCNN. In the extensive experiments, our method achieves superior detection results on the three public benchmark datasets: UCFSports, J-HMDB and UCF101. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:515 / 524
页数:10
相关论文
共 50 条
  • [21] Learning to track for spatio-temporal action localization
    Weinzaepfel, Philippe
    Harchaoui, Zaid
    Schmid, Cordelia
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 3164 - 3172
  • [22] Efficient spatio-temporal network for action recognition
    Su, Yanxiong
    Zhao, Qian
    [J]. JOURNAL OF REAL-TIME IMAGE PROCESSING, 2024, 21 (05)
  • [23] Action recognition by spatio-temporal oriented energies
    Zhen, Xiantong
    Shao, Ling
    Li, Xuelong
    [J]. INFORMATION SCIENCES, 2014, 281 : 295 - 309
  • [24] LEARNING SPATIO-TEMPORAL DEPENDENCIES FOR ACTION RECOGNITION
    Cai, Qiao
    Yin, Yafeng
    Man, Hong
    [J]. 2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 3740 - 3744
  • [25] Spatio-temporal information for human action recognition
    Yao, Li
    Liu, Yunjian
    Huang, Shihui
    [J]. EURASIP JOURNAL ON IMAGE AND VIDEO PROCESSING, 2016,
  • [26] Spatio-temporal information for human action recognition
    Li Yao
    Yunjian Liu
    Shihui Huang
    [J]. EURASIP Journal on Image and Video Processing, 2016
  • [27] Spatio-Temporal Fusion Networks for Action Recognition
    Cho, Sangwoo
    Foroosh, Hassan
    [J]. COMPUTER VISION - ACCV 2018, PT I, 2019, 11361 : 347 - 364
  • [28] A Stepwise Spatio-Temporal Flow Clustering Method for Discovering Mobility Trends
    Yao, Xin
    Zhu, Di
    Gao, Yong
    Wu, Lun
    Zhang, Pengcheng
    Liu, Yu
    [J]. IEEE ACCESS, 2018, 6 : 44666 - 44675
  • [29] Discovering and summarising regions of correlated spatio-temporal change in evolving graphs
    Chan, Jeffrey
    Bailey, James
    Leckie, Christopher
    [J]. ICDM 2006: SIXTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, WORKSHOPS, 2006, : 361 - +
  • [30] Discovering urban mobility structure: a spatio-temporal representational learning approach
    Duan, Xiaoqi
    Zhang, Tong
    Xu, Zhibang
    Wan, Qiao
    Yan, Jinbiao
    Wang, Wangshu
    Tian, Youliang
    [J]. INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2023, 16 (02) : 4044 - 4072