Dynamically triangulating Lorentzian quantum gravity

被引:198
|
作者
Ambjorn, J
Jurkiewicz, J
Loll, R
机构
[1] Niels Bohr Inst, DK-2100 Copenhagen O, Denmark
[2] Jagiellonian Univ, Inst Phys, PL-30059 Krakow, Poland
[3] Max Planck Inst Gravitatphys, Albert Einstein Inst, D-14476 Golm, Germany
[4] Univ Utrecht, Inst Theoret Phys, NL-3584 CE Utrecht, Netherlands
关键词
D O I
10.1016/S0550-3213(01)00297-8
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Fruitful ideas on how to quantize gravity are few and far between. In this paper, we give a complete description of a recently introduced non-perturbative gravitational path integral whose continuum limit has already been investigated extensively in d < 4, with promising results. It is based on a simplicial regularization of Lorentzian spacetimes and, most importantly, possesses a well-defined, non-perturbative Wick rotation. We present a detailed analysis of the geometric and mathematical properties of the discretized model in d = 3, 4. This includes a derivation of Lorentzian simplicial manifold constraints, the gravitational actions and their Wick rotation. We define a transfer matrix for the system and show that it leads to a well-defined self-adjoint Hamiltonian. In view of numerical simulations, we also suggest sets of Lorentzian Monte Carlo moves. We demonstrate that certain pathological phases found previously in Euclidean models of dynamical triangulations cannot be realized in the Lorentzian case. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:347 / 382
页数:36
相关论文
共 50 条
  • [1] 3d Lorentzian, dynamically triangulated quantum gravity
    Ambjorn, J
    Jurkiewicz, J
    Loll, R
    [J]. NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2002, 106 : 980 - 982
  • [2] Lorentzian condition in quantum gravity
    Bousso, R
    Hawking, S
    [J]. PHYSICAL REVIEW D, 1999, 59 (10): : 1 - 6
  • [3] Discrete Lorentzian quantum gravity
    Loll, R
    [J]. NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2001, 94 : 96 - 107
  • [4] Asymptotic safety in Lorentzian quantum gravity
    D'Angelo, Edoardo
    [J]. PHYSICAL REVIEW D, 2024, 109 (06)
  • [5] Lorentzian Quantum Gravity and the Graviton Spectral Function
    Fehre, Jannik
    Litim, Daniel F.
    Pawlowski, Jan M.
    Reichert, Manuel
    [J]. PHYSICAL REVIEW LETTERS, 2023, 130 (08)
  • [6] Lorentzian loop quantum gravity vertex amplitude
    Pereira, Roberto
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2008, 25 (08)
  • [7] Effective spin foam models for Lorentzian quantum gravity
    Asante, Seth K.
    Dittrich, Bianca
    Padua-Arguelles, Jose
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2021, 38 (19)
  • [8] Lorentzian and Euclidean quantum gravity analytical and numerical results
    Ambjorn, J
    Jurkiewicz, J
    Loll, R
    [J]. M-THEORY AND QUANTUM GEOMETRY, 2000, 556 : 381 - 449
  • [9] Nonperturbative 3D Lorentzian quantum gravity
    Ambjorn, J
    Jurkiewicz, J
    Loll, R
    [J]. PHYSICAL REVIEW D, 2001, 64 (04)
  • [10] Towards coarse graining of discrete Lorentzian quantum gravity
    Eichhorn, Astrid
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2018, 35 (04)