Discrete Lorentzian quantum gravity

被引:57
|
作者
Loll, R [1 ]
机构
[1] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Golm, Germany
关键词
D O I
10.1016/S0920-5632(01)00957-4
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Just as for non-abelian gauge theories at strong coupling, discrete lattice methods are a natural tool in the study of non-perturbative quantum gravity. They have to reflect the fact that the geometric degrees of freedom are dynamical, and that therefore also the lattice theory must be formulated in a background-independent way. After summarizing the status quo of discrete covariant lattice models for four-dimensional quantum gravity, I describe a new class of discrete gravity models whose starting point is a path integral over Lorentzian (rather than Euclidean) space-time geometries. A number of interesting and unexpected results that have been obtained for these dynamically triangulated models in two and three dimensions make discrete Lorentzian gravity a promising candidate for a non-trivial theory of quantum gravity.
引用
收藏
页码:96 / 107
页数:12
相关论文
共 50 条
  • [1] Towards coarse graining of discrete Lorentzian quantum gravity
    Eichhorn, Astrid
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2018, 35 (04)
  • [2] Lorentzian condition in quantum gravity
    Bousso, R
    Hawking, S
    [J]. PHYSICAL REVIEW D, 1999, 59 (10): : 1 - 6
  • [3] Dynamically triangulating Lorentzian quantum gravity
    Ambjorn, J
    Jurkiewicz, J
    Loll, R
    [J]. NUCLEAR PHYSICS B, 2001, 610 (1-2) : 347 - 382
  • [4] Asymptotic safety in Lorentzian quantum gravity
    D'Angelo, Edoardo
    [J]. PHYSICAL REVIEW D, 2024, 109 (06)
  • [5] Lorentzian Quantum Gravity and the Graviton Spectral Function
    Fehre, Jannik
    Litim, Daniel F.
    Pawlowski, Jan M.
    Reichert, Manuel
    [J]. PHYSICAL REVIEW LETTERS, 2023, 130 (08)
  • [6] Lorentzian loop quantum gravity vertex amplitude
    Pereira, Roberto
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2008, 25 (08)
  • [7] Effective spin foam models for Lorentzian quantum gravity
    Asante, Seth K.
    Dittrich, Bianca
    Padua-Arguelles, Jose
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2021, 38 (19)
  • [8] Lorentzian and Euclidean quantum gravity analytical and numerical results
    Ambjorn, J
    Jurkiewicz, J
    Loll, R
    [J]. M-THEORY AND QUANTUM GEOMETRY, 2000, 556 : 381 - 449
  • [9] Nonperturbative 3D Lorentzian quantum gravity
    Ambjorn, J
    Jurkiewicz, J
    Loll, R
    [J]. PHYSICAL REVIEW D, 2001, 64 (04)
  • [10] Fermions in 2d Lorentzian quantum gravity
    Bogacz, L
    Burda, Z
    Jurkiewicz, J
    [J]. ACTA PHYSICA POLONICA B, 2003, 34 (08): : 3987 - 3999