Lorentzian condition in quantum gravity

被引:29
|
作者
Bousso, R [1 ]
Hawking, S
机构
[1] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
[2] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 9EW, England
来源
PHYSICAL REVIEW D | 1999年 / 59卷 / 10期
关键词
D O I
10.1103/PhysRevD.59.103501
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The wave function of the Universe is usually taken to be a functional of the three-metric on a spacelike section, Sigma, which is measured. It is sometimes better, however, to work in the conjugate representation, where the wave function depends on a quantity related to the second fundamental form of Sigma. This makes it possible to ensure that Sigma is part of a Lorentzian universe by requiring that the argument of the wave function be purely imaginary. We demonstrate the advantages of this formalism first in the well-known examples of the nucleation of a de Sitter or a Nariai universe. We then use it to calculate the pair creation rate for sub-maximal black holes in de Sitter space, which had been thought to vanish semi-classically. [S0556-2821(99)00810-3].
引用
收藏
页码:1 / 6
页数:6
相关论文
共 50 条
  • [1] Discrete Lorentzian quantum gravity
    Loll, R
    [J]. NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2001, 94 : 96 - 107
  • [2] Dynamically triangulating Lorentzian quantum gravity
    Ambjorn, J
    Jurkiewicz, J
    Loll, R
    [J]. NUCLEAR PHYSICS B, 2001, 610 (1-2) : 347 - 382
  • [3] Asymptotic safety in Lorentzian quantum gravity
    D'Angelo, Edoardo
    [J]. PHYSICAL REVIEW D, 2024, 109 (06)
  • [4] Lorentzian Quantum Gravity and the Graviton Spectral Function
    Fehre, Jannik
    Litim, Daniel F.
    Pawlowski, Jan M.
    Reichert, Manuel
    [J]. PHYSICAL REVIEW LETTERS, 2023, 130 (08)
  • [5] Lorentzian loop quantum gravity vertex amplitude
    Pereira, Roberto
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2008, 25 (08)
  • [6] Effective spin foam models for Lorentzian quantum gravity
    Asante, Seth K.
    Dittrich, Bianca
    Padua-Arguelles, Jose
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2021, 38 (19)
  • [7] Lorentzian and Euclidean quantum gravity analytical and numerical results
    Ambjorn, J
    Jurkiewicz, J
    Loll, R
    [J]. M-THEORY AND QUANTUM GEOMETRY, 2000, 556 : 381 - 449
  • [8] Nonperturbative 3D Lorentzian quantum gravity
    Ambjorn, J
    Jurkiewicz, J
    Loll, R
    [J]. PHYSICAL REVIEW D, 2001, 64 (04)
  • [9] Towards coarse graining of discrete Lorentzian quantum gravity
    Eichhorn, Astrid
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2018, 35 (04)
  • [10] Fermions in 2d Lorentzian quantum gravity
    Bogacz, L
    Burda, Z
    Jurkiewicz, J
    [J]. ACTA PHYSICA POLONICA B, 2003, 34 (08): : 3987 - 3999