Lorentzian loop quantum gravity vertex amplitude

被引:49
|
作者
Pereira, Roberto [1 ]
机构
[1] Univ Mediterranee, CPT, CNRS Case 907, F-13288 Marseille, France
关键词
D O I
10.1088/0264-9381/25/8/085013
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We generalize a model recently proposed for Euclidean quantum gravity to the case of Lorentzian signature. The main features of the Euclidean model are preserved in the Lorentzian one. In particular, the boundary Hilbert space matches the one of SU(2) loop quantum gravity. As in the Euclidean case, the model can be obtained from the Lorentzian Barrett-Crane model from a flipping of the Poisson structure, or alternatively, by adding a topological term to the action and taking the small Barbero-Immirzi parameter limit.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Loop-quantum-gravity vertex amplitude
    Engle, Jonathan
    Pereira, Roberto
    Rovelli, Carlo
    [J]. PHYSICAL REVIEW LETTERS, 2007, 99 (16)
  • [2] Cosmological constant in loop quantum gravity vertex amplitude
    Han, Muxin
    [J]. PHYSICAL REVIEW D, 2011, 84 (06)
  • [3] Lorentzian proper vertex amplitude: Classical analysis and quantum derivation
    Engle, Jonathan
    Zipfel, Antonia
    [J]. PHYSICAL REVIEW D, 2016, 94 (06)
  • [4] Regularization and finiteness of the Lorentzian loop quantum gravity vertices
    Engle, Jonathan
    Pereira, Roberto
    [J]. PHYSICAL REVIEW D, 2009, 79 (08)
  • [5] Lorentzian proper vertex amplitude: Asymptotics
    Engle, Jonathan
    Vilensky, Ilya
    Zipfel, Antonia
    [J]. PHYSICAL REVIEW D, 2016, 94 (06)
  • [6] Matrix elements of Lorentzian Hamiltonian constraint in loop quantum gravity
    Alesci, Emanuele
    Liegener, Klaus
    Zipfel, Antonia
    [J]. PHYSICAL REVIEW D, 2013, 88 (08)
  • [7] From Euclidean to Lorentzian loop quantum gravity via a positive complexifier
    Varadarajan, Madhavan
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2019, 36 (01)
  • [8] 3D Lorentzian loop quantum gravity and the spinor approach
    Girelli, Florian
    Sellaroli, Giuseppe
    [J]. PHYSICAL REVIEW D, 2015, 92 (12):
  • [9] Lorentzian condition in quantum gravity
    Bousso, R
    Hawking, S
    [J]. PHYSICAL REVIEW D, 1999, 59 (10): : 1 - 6
  • [10] Discrete Lorentzian quantum gravity
    Loll, R
    [J]. NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2001, 94 : 96 - 107