Lorentzian loop quantum gravity vertex amplitude

被引:49
|
作者
Pereira, Roberto [1 ]
机构
[1] Univ Mediterranee, CPT, CNRS Case 907, F-13288 Marseille, France
关键词
D O I
10.1088/0264-9381/25/8/085013
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We generalize a model recently proposed for Euclidean quantum gravity to the case of Lorentzian signature. The main features of the Euclidean model are preserved in the Lorentzian one. In particular, the boundary Hilbert space matches the one of SU(2) loop quantum gravity. As in the Euclidean case, the model can be obtained from the Lorentzian Barrett-Crane model from a flipping of the Poisson structure, or alternatively, by adding a topological term to the action and taking the small Barbero-Immirzi parameter limit.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] On Propagation in Loop Quantum Gravity
    Thiemann, Thomas
    Varadarajan, Madhavan
    [J]. UNIVERSE, 2022, 8 (12)
  • [42] An invitation to loop quantum gravity
    Smolin, L
    [J]. QUANTUM THEORY AND SYMMETRIES, 2004, : 655 - 682
  • [43] Automorphisms in loop quantum gravity
    Bahr, Benjamin
    Thiemann, Thomas
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2009, 26 (23)
  • [44] Loop Quantum Gravity: an introduction
    Perez, Alejandro
    [J]. COSMOLOGY AND GRAVITATION, 2009, 1132 : 386 - 428
  • [45] Loop Representation of Quantum Gravity
    Lim, Adrian P. C.
    [J]. ANNALES HENRI POINCARE, 2024, 25 (03): : 1911 - 1956
  • [46] Extended loop quantum gravity
    Fatibene, L.
    Ferraris, M.
    Francaviglia, M.
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2010, 27 (18)
  • [47] The loop algebra of quantum gravity
    Toh, TC
    [J]. HELVETICA PHYSICA ACTA, 1997, 70 (03): : 417 - 431
  • [48] Loop Representation of Quantum Gravity
    Adrian P. C. Lim
    [J]. Annales Henri Poincaré, 2024, 25 : 1911 - 1956
  • [49] Lectures on Loop Quantum Gravity
    Thiemann, T
    [J]. QUANTUM GRAVITY: FROM THEORY TO EXPERIMENTAL SEARCH, 2003, 631 : 41 - 135
  • [50] Matter in Loop Quantum Gravity
    Date, Ghanashyam
    Hossain, Golam Mortuza
    [J]. SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2012, 8