Lorentzian condition in quantum gravity

被引:29
|
作者
Bousso, R [1 ]
Hawking, S
机构
[1] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
[2] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 9EW, England
来源
PHYSICAL REVIEW D | 1999年 / 59卷 / 10期
关键词
D O I
10.1103/PhysRevD.59.103501
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The wave function of the Universe is usually taken to be a functional of the three-metric on a spacelike section, Sigma, which is measured. It is sometimes better, however, to work in the conjugate representation, where the wave function depends on a quantity related to the second fundamental form of Sigma. This makes it possible to ensure that Sigma is part of a Lorentzian universe by requiring that the argument of the wave function be purely imaginary. We demonstrate the advantages of this formalism first in the well-known examples of the nucleation of a de Sitter or a Nariai universe. We then use it to calculate the pair creation rate for sub-maximal black holes in de Sitter space, which had been thought to vanish semi-classically. [S0556-2821(99)00810-3].
引用
收藏
页码:1 / 6
页数:6
相关论文
共 50 条
  • [31] Affine group representation formalism for four-dimensional, Lorentzian, quantum gravity
    Chou, Ching-Yi
    Ita, Eyo E.
    Soo, Chopin
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2013, 30 (06)
  • [32] Spectra of length and area in (2+1) Lorentzian loop quantum gravity
    Freidel, L
    Livine, ER
    Rovelli, AC
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2003, 20 (08) : 1463 - 1478
  • [33] Asymptotically Safe Lorentzian Gravity
    Manrique, Elisa
    Rechenberger, Stefan
    Saueressig, Frank
    [J]. PHYSICAL REVIEW LETTERS, 2011, 106 (25)
  • [34] Lorentzian wormholes in Lovelock gravity
    Dehghani, M. H.
    Dayyani, Z.
    [J]. PHYSICAL REVIEW D, 2009, 79 (06):
  • [35] CRITICAL TESTS OF LORENTZIAN GRAVITY
    CLUBE, SVM
    [J]. SPECULATIONS IN SCIENCE AND TECHNOLOGY, 1979, 2 (01) : 47 - 58
  • [36] Quantum spin dynamics (QSD): IV. 2+1 Euclidean quantum gravity as a model to test 3+1 Lorentzian quantum gravity
    Thiemann, T
    [J]. CLASSICAL AND QUANTUM GRAVITY, 1998, 15 (05) : 1249 - 1280
  • [37] Lorentzian condition in holographic cosmology
    Hertog, Thomas
    Monten, Ruben
    Vreys, Yannick
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2017, (01):
  • [38] Lorentzian condition in holographic cosmology
    Thomas Hertog
    Ruben Monten
    Yannick Vreys
    [J]. Journal of High Energy Physics, 2017
  • [39] UNITARITY CONDITION ON QUANTUM-FIELDS IN SEMICLASSICAL GRAVITY
    KIM, SP
    [J]. PHYSICS LETTERS A, 1995, 205 (5-6) : 359 - 363
  • [40] 3D Lorentzian quantum gravity from the asymmetric ABAB matrix model
    Ambjorn, J
    Jurkiewicz, J
    Loll, R
    Vernizzi, G
    [J]. ACTA PHYSICA POLONICA B, 2003, 34 (10): : 4667 - 4688