Dynamically triangulating Lorentzian quantum gravity

被引:198
|
作者
Ambjorn, J
Jurkiewicz, J
Loll, R
机构
[1] Niels Bohr Inst, DK-2100 Copenhagen O, Denmark
[2] Jagiellonian Univ, Inst Phys, PL-30059 Krakow, Poland
[3] Max Planck Inst Gravitatphys, Albert Einstein Inst, D-14476 Golm, Germany
[4] Univ Utrecht, Inst Theoret Phys, NL-3584 CE Utrecht, Netherlands
关键词
D O I
10.1016/S0550-3213(01)00297-8
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Fruitful ideas on how to quantize gravity are few and far between. In this paper, we give a complete description of a recently introduced non-perturbative gravitational path integral whose continuum limit has already been investigated extensively in d < 4, with promising results. It is based on a simplicial regularization of Lorentzian spacetimes and, most importantly, possesses a well-defined, non-perturbative Wick rotation. We present a detailed analysis of the geometric and mathematical properties of the discretized model in d = 3, 4. This includes a derivation of Lorentzian simplicial manifold constraints, the gravitational actions and their Wick rotation. We define a transfer matrix for the system and show that it leads to a well-defined self-adjoint Hamiltonian. In view of numerical simulations, we also suggest sets of Lorentzian Monte Carlo moves. We demonstrate that certain pathological phases found previously in Euclidean models of dynamical triangulations cannot be realized in the Lorentzian case. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:347 / 382
页数:36
相关论文
共 50 条
  • [31] Spectra of length and area in (2+1) Lorentzian loop quantum gravity
    Freidel, L
    Livine, ER
    Rovelli, AC
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2003, 20 (08) : 1463 - 1478
  • [32] Asymptotically Safe Lorentzian Gravity
    Manrique, Elisa
    Rechenberger, Stefan
    Saueressig, Frank
    [J]. PHYSICAL REVIEW LETTERS, 2011, 106 (25)
  • [33] Lorentzian wormholes in Lovelock gravity
    Dehghani, M. H.
    Dayyani, Z.
    [J]. PHYSICAL REVIEW D, 2009, 79 (06):
  • [34] CRITICAL TESTS OF LORENTZIAN GRAVITY
    CLUBE, SVM
    [J]. SPECULATIONS IN SCIENCE AND TECHNOLOGY, 1979, 2 (01) : 47 - 58
  • [35] Quantum spin dynamics (QSD): IV. 2+1 Euclidean quantum gravity as a model to test 3+1 Lorentzian quantum gravity
    Thiemann, T
    [J]. CLASSICAL AND QUANTUM GRAVITY, 1998, 15 (05) : 1249 - 1280
  • [36] 3D Lorentzian quantum gravity from the asymmetric ABAB matrix model
    Ambjorn, J
    Jurkiewicz, J
    Loll, R
    Vernizzi, G
    [J]. ACTA PHYSICA POLONICA B, 2003, 34 (10): : 4667 - 4688
  • [37] Emergence of Lorentzian signature and scalar gravity
    Girelli, F.
    Liberati, S.
    Sindoni, L.
    [J]. PHYSICAL REVIEW D, 2009, 79 (04):
  • [38] The gravity dual of Lorentzian OPE blocks
    Chen, Heng-Yu
    Chen, Lung-Chuan
    Kobayashi, Nozomu
    Nishioka, Tatsuma
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (04)
  • [39] Lorentzian quantum cosmology
    Feldbrugge, Job
    Lehners, Jean-Luc
    Turok, Neil
    [J]. PHYSICAL REVIEW D, 2017, 95 (10)
  • [40] A Lorentzian quantum geometry
    Finster, Felix
    Grotz, Andreas
    [J]. ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2012, 16 (04) : 1197 - 1290