Non-Differentiable Mechanical Model and Its Implications

被引:10
|
作者
Agop, M. [1 ,2 ,3 ]
Niculescu, O. [4 ]
Timofte, A. [4 ]
Bibire, L. [5 ]
Ghenadi, A. S. [5 ]
Nicuta, A. [3 ]
Nejneru, C. [3 ]
Munceleanu, G. V. [4 ]
机构
[1] Univ Sci & Technol Lille, Ctr Etud & Rech Lasers & Applicat, FR CNRS 2416, F-59655 Villeneuve Dascq, France
[2] Univ Athens, Dept Phys, GR-15771 Athens, Greece
[3] Gh Asachi Tech Univ Iasi, Iasi 700050, Romania
[4] Alexandru Ioan Cuza Univ, Fac Phys, Iasi 700506, Romania
[5] Univ Bacau, Dept Engn, Bacau 600115, Romania
关键词
Fractal fluids; Complex speed field; Navier-Stokes-type equation; Schrodinger-type equation; EPSILON((INFINITY)) SPACE-TIME; E-INFINITY; HYDRODYNAMIC MODEL;
D O I
10.1007/s10773-010-0330-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Considering that the motions of the particles take place on fractals, a non-differentiable mechanical model is built. Only if the spatial coordinates are fractal functions, the Galilean version of our model is obtained: the geodesics satisfy a Navier-Stokes-type of equation with an imaginary viscosity coefficient for a complex speed field or respectively, a Schrodinger-type of equation or hydrodynamic equations, in the case of irrotational movements. Moreover, in this approach, the analysis of the fractal fluid dynamics generates conductive properties in the case of movements synchronization both on differentiable and fractal scales, and convective properties in the absence of synchronization ( e. g. laser ablation plasma is analyzed). On the other hand, if both the spatial and temporal coordinates are fractal functions, it results that, the geodesics satisfy a Klein-Gordon-type of equation on a Minkowskian manifold.
引用
收藏
页码:1489 / 1506
页数:18
相关论文
共 50 条
  • [1] Non-Differentiable Mechanical Model and Its Implications
    M. Agop
    O. Niculescu
    A. Timofte
    L. Bibire
    A. S. Ghenadi
    A. Nicuta
    C. Nejneru
    G. V. Munceleanu
    [J]. International Journal of Theoretical Physics, 2010, 49 : 1489 - 1506
  • [2] A NON-DIFFERENTIABLE INPUT OUTPUT MODEL
    SZIDAROVSKY, F
    OKUGUCHI, K
    [J]. MATHEMATICAL SOCIAL SCIENCES, 1989, 18 (02) : 187 - 190
  • [3] NON-DIFFERENTIABLE FUNCTIONS
    ANDRESEN, E
    MAULDON, JG
    DRISCOLL, RJ
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1968, 75 (06): : 688 - &
  • [4] Topological description of a non-differentiable bioeconomics model
    González-Olivares, E
    Sáez, E
    Stange, E
    Szántó, I
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2005, 35 (04) : 1133 - 1155
  • [5] Non-differentiable deformations of Rn
    Cresson, Jacky
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2006, 3 (07) : 1395 - 1415
  • [6] Programming with a non-differentiable constraint
    G. C. Tuteja
    [J]. OPSEARCH, 2004, 41 (4) : 291 - 297
  • [7] Non-differentiable variational principles
    Cresson, J
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 307 (01) : 48 - 64
  • [8] Non-Differentiable Function Tracking
    Kamal, Shyam
    Yu, Xinghuo
    Sharma, Rahul Kumar
    Mishra, Jyoti
    Ghosh, Sandip
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2019, 66 (11) : 1835 - 1839
  • [9] Implications of Non-Differentiable Entropy on a Space-Time Manifold
    Agop, Maricel
    Gavrilut, Alina
    Stefan, Gavril
    Doroftei, Bogdan
    [J]. ENTROPY, 2015, 17 (04): : 2184 - 2197
  • [10] Renormalisation of non-differentiable potentials
    J. Alexandre
    N. Defenu
    G. Grigolia
    I. G. Márián
    D. Mdinaradze
    A. Trombettoni
    Y. Turovtsi-Shiutev
    I. Nándori
    [J]. Journal of High Energy Physics, 2022