Topological description of a non-differentiable bioeconomics model

被引:6
|
作者
González-Olivares, E
Sáez, E
Stange, E
Szántó, I
机构
[1] Pontificia Univ Catolica Valparaiso, Inst Matemat, Valparaiso, Chile
[2] Univ Tecn Federico Santa Maria, Dept Matemat, Valparaiso, Chile
[3] Univ Valparaiso, Inst Matemat & Fis, Valparaiso, Chile
关键词
stability; limit cycles; bifurcations; bioeconomic model;
D O I
10.1216/rmjm/1181069680
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A predator-prey model with non-differentiable functional response and with a Cobb-Douglas type production function is considered. We show that the non-differentiability has a strong influence on the dynamics of the model, locally and globally. We prove that there is not a uniqueness of solutions for any initial conditions on the coordinate axis. We conclude that for any conditions of the parameters, the dynamics of the model does not contain a globally attracting singularity. Finally, in the parameters space, we prove the existence of an open set such that, for all values in this set, the model has at least two small amplitude limit cycles generated by Hopf bifurcations.
引用
收藏
页码:1133 / 1155
页数:23
相关论文
共 50 条
  • [1] A NON-DIFFERENTIABLE INPUT OUTPUT MODEL
    SZIDAROVSKY, F
    OKUGUCHI, K
    [J]. MATHEMATICAL SOCIAL SCIENCES, 1989, 18 (02) : 187 - 190
  • [2] Non-Differentiable Mechanical Model and Its Implications
    M. Agop
    O. Niculescu
    A. Timofte
    L. Bibire
    A. S. Ghenadi
    A. Nicuta
    C. Nejneru
    G. V. Munceleanu
    [J]. International Journal of Theoretical Physics, 2010, 49 : 1489 - 1506
  • [3] NON-DIFFERENTIABLE FUNCTIONS
    ANDRESEN, E
    MAULDON, JG
    DRISCOLL, RJ
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1968, 75 (06): : 688 - &
  • [4] Non-Differentiable Mechanical Model and Its Implications
    Agop, M.
    Niculescu, O.
    Timofte, A.
    Bibire, L.
    Ghenadi, A. S.
    Nicuta, A.
    Nejneru, C.
    Munceleanu, G. V.
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2010, 49 (07) : 1489 - 1506
  • [5] Non-differentiable deformations of Rn
    Cresson, Jacky
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2006, 3 (07) : 1395 - 1415
  • [6] Programming with a non-differentiable constraint
    G. C. Tuteja
    [J]. OPSEARCH, 2004, 41 (4) : 291 - 297
  • [7] Non-differentiable variational principles
    Cresson, J
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 307 (01) : 48 - 64
  • [8] Non-Differentiable Function Tracking
    Kamal, Shyam
    Yu, Xinghuo
    Sharma, Rahul Kumar
    Mishra, Jyoti
    Ghosh, Sandip
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2019, 66 (11) : 1835 - 1839
  • [9] Renormalisation of non-differentiable potentials
    J. Alexandre
    N. Defenu
    G. Grigolia
    I. G. Márián
    D. Mdinaradze
    A. Trombettoni
    Y. Turovtsi-Shiutev
    I. Nándori
    [J]. Journal of High Energy Physics, 2022
  • [10] ON WEIERSTRASS NON-DIFFERENTIABLE FUNCTION
    HATA, M
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1988, 307 (03): : 119 - 123