Non-differentiable variational principles

被引:44
|
作者
Cresson, J [1 ]
机构
[1] Univ Franche Comte, CNRS, UMR 6623, Equipe Math Besancon, F-25030 Besancon, France
关键词
non-differentiable functions; variational principle; least-action principle; Schrodinger's equation;
D O I
10.1016/j.jmaa.2004.10.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop a calculus of variations for functionals which are defined on a set of non-differentiable curves. We first extend the classical differential calculus in a quantum calculus, which allows us to define a complex operator, called the scale derivative, which is the non-differentiable analogue of the classical derivative. We then define the notion of extremals for our functionals and obtain a characterization in term of a generalized Euler-Lagrange equation. We finally prove that solutions of the Schrodinger equation can be obtained as extremals of a non-differentiable variational principle, leading to an extended Hamilton's principle of least action for quantum mechanics. We compare this approach with the scale relativity theory of Nottale, which assumes a fractal structure of space-time. © 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:48 / 64
页数:17
相关论文
共 50 条
  • [1] On a variational problem with non-differentiable constraints
    Moser, Roger
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2007, 29 (01) : 119 - 140
  • [2] On a variational problem with non-differentiable constraints
    Roger Moser
    [J]. Calculus of Variations and Partial Differential Equations, 2007, 29 : 119 - 140
  • [3] Adversarial Variational Optimization of Non-Differentiable Simulators
    Louppe, Gilles
    Hermans, Joeri
    Cranmer, Kyle
    [J]. 22ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 89, 2019, 89
  • [4] CONSTANTS OF MOTION FOR NON-DIFFERENTIABLE QUANTUM VARIATIONAL PROBLEMS
    Cresson, Jacky
    Frederico, Gastao S. F.
    Torres, Delfim F. M.
    [J]. TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2009, 33 (02) : 217 - 231
  • [5] NON-DIFFERENTIABLE FUNCTIONS
    ANDRESEN, E
    MAULDON, JG
    DRISCOLL, RJ
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1968, 75 (06): : 688 - &
  • [6] Non-differentiable deformations of Rn
    Cresson, Jacky
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2006, 3 (07) : 1395 - 1415
  • [7] Programming with a non-differentiable constraint
    G. C. Tuteja
    [J]. OPSEARCH, 2004, 41 (4) : 291 - 297
  • [8] Non-Differentiable Function Tracking
    Kamal, Shyam
    Yu, Xinghuo
    Sharma, Rahul Kumar
    Mishra, Jyoti
    Ghosh, Sandip
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2019, 66 (11) : 1835 - 1839
  • [9] Renormalisation of non-differentiable potentials
    J. Alexandre
    N. Defenu
    G. Grigolia
    I. G. Márián
    D. Mdinaradze
    A. Trombettoni
    Y. Turovtsi-Shiutev
    I. Nándori
    [J]. Journal of High Energy Physics, 2022
  • [10] ON WEIERSTRASS NON-DIFFERENTIABLE FUNCTION
    HATA, M
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1988, 307 (03): : 119 - 123