Non-differentiable deformations of Rn

被引:12
|
作者
Cresson, Jacky
机构
[1] Univ Pau & Pays Adour, Lab Math Appl Pau, CNRS, UMR 5142, F-64013 Pau, France
[2] Inst Hautes Etud Sci, F-91440 Bures Sur Yvette, France
关键词
D O I
10.1142/S0219887806001752
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Many problems of physics or biology involve very irregular objects like the rugged surface of a malignant cell nucleus or the structure of space-time at the atomic scale. We define and study non-differentiable deformations of the classical Cartesian space R-n which can be viewed as the basic bricks to construct irregular objects. They are obtained by taking the topological product of n-graphs of nowhere differentiable real valued functions. Our point of view is to replace the study of a non-differentiable function by the dynamical study of a one-parameter family of smooth regularization of this function. In particular, this allows us to construct a one-paxameter family of smooth coordinates systems on non-differentiable deformations of R-n, which depend on the smoothing parameter via an explicit differential equation called a scale law. Deformations of R-n are examples of a new class of geometrical objects called scale manifolds which are defined in this paper. As an application, we derive rigorously the main results of the scale-relativity theory developed by Nottale in the framework of a scale space-time manifold.
引用
收藏
页码:1395 / 1415
页数:21
相关论文
共 50 条
  • [1] Multiplicity result for a class of elliptic problems with non-differentiable terms in RN
    Zhang, Guoqing
    Liu, Sanyang
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (5-6) : 1611 - 1619
  • [2] NON-DIFFERENTIABLE FUNCTIONS
    ANDRESEN, E
    MAULDON, JG
    DRISCOLL, RJ
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1968, 75 (06): : 688 - &
  • [3] Programming with a non-differentiable constraint
    G. C. Tuteja
    [J]. OPSEARCH, 2004, 41 (4) : 291 - 297
  • [4] Non-differentiable variational principles
    Cresson, J
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 307 (01) : 48 - 64
  • [5] Non-Differentiable Function Tracking
    Kamal, Shyam
    Yu, Xinghuo
    Sharma, Rahul Kumar
    Mishra, Jyoti
    Ghosh, Sandip
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2019, 66 (11) : 1835 - 1839
  • [6] Renormalisation of non-differentiable potentials
    J. Alexandre
    N. Defenu
    G. Grigolia
    I. G. Márián
    D. Mdinaradze
    A. Trombettoni
    Y. Turovtsi-Shiutev
    I. Nándori
    [J]. Journal of High Energy Physics, 2022
  • [7] ON WEIERSTRASS NON-DIFFERENTIABLE FUNCTION
    HATA, M
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1988, 307 (03): : 119 - 123
  • [8] THERMODYNAMICS OF NON-DIFFERENTIABLE SYSTEMS
    BOYLING, JB
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1974, 9 (06) : 379 - 392
  • [9] Renormalisation of non-differentiable potentials
    Alexandre, J.
    Defenu, N.
    Grigolia, G.
    Marian, I. G.
    Mdinaradze, D.
    Trombettoni, A.
    Turovtsi-Shiutev, Y.
    Nandori, I
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (07)
  • [10] Non-differentiable symmetric duality
    Mond, B
    Schechter, M
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1996, 53 (02) : 177 - 188